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When the Bull Bursts the Bubble, the Bear Arrives 

 
Forecasting Bear Markets 

 

The main objective of our research was to find a model that could forecast or, at least, acknowledge the presence 

of a bear market. In order to estimate such a model, the first necessary step is to date past bear and bull markets. 

This can be done either through a parametric approach (Markov Switching Models) or through a non-parametric 

one. We chose to focus on the latter.  

 

The non-parametric approach largely revolves around the algorithm developed by Bry and Boschan (1971). It was 

originally developed for and applied to the detection of business cycles, in particular for quantitatively replicating 

the contractions and expansions determined by the National Bureau of Economic Research (NBER). This 

computer program recognizes the patterns in the time series, detaches these patterns according to a sequence of 

rules, and locates the turning points (peaks and troughs) in the series. Following the business cycle literature, we 

assume that the duration of a complete cycle from the trough to the next trough (or alternatively peak to peak) 

must be at least 15 months. In addition, the time spent in a bear market (time from the peak to the next trough) or 

bull market (trough to peak) must be at least six months. Once identified the turning points we can build a binary 

time series where the value one signifies a bear market state. 

 

The model we are going to estimate is called Probit Model and is a particular type of regression where the dependent 

variable can only take binary values. Given Yt , Xt as the binary dependent variable and the regressors’ matrix 

respectively, we assume the model takes the form Pt−1(Yt = 1|Xt) = Φ(Xt−1
′ β) where P denotes probability, and 

Φ is the Cumulative Distribution Function (CDF) of the standard normal distribution. The parameters β are 

typically estimated by maximum likelihood. Therefore, after having estimated the parameters, we can make 

forecasts on the state variable Y for the next periods. 

 

After a review of the current literature we decided to select as regressors the most significant ones: the 1-period 

lagged value of Y, the previous period log-return of the stock market and a macroeconomic indicator, which is the 

Term-Spread (i.e. the difference between the 10yr treasury and the 3months T-bill). 

 

We analyzed 50 years of monthly S&P500 returns. As a first step, we divided the dataset in two subsets and then 

we estimated the model on the first half of the series and dedicated the second half of the series to out-of-sample 

forecasts. Forecasts are constructed using an expansive window of observations where the data from the start of 

the dataset through to the present forecast time are used in estimation to obtain a new forecast. This procedure is 

repeated until the end of the sample.  

In the chart (fig.1) you can see, in the blue line, the forecasted probability of having a bear market the next month 

plotted against the S&P500 index. 
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Fig.1 Probability forecast of a bear market (blue line) against S&P 500 (red line) (Source: yahoo.finance) 

As you can see, besides some strange solitary extreme values, the forecast successfully predicted the 2 major bear 

markets of the last decades: the dot-com bubble burst and the 2008 financial crisis. Unfortunately, the model 

forecasts lag a few months behind the start of every bear market and this is due to the nature of the Bry Boschan 

algorithm, which requires data points before and after the peak (or troughs) in order to identify it and therefore it 

takes a few months to identify the most recent turning point. Nonetheless, it still turns out to be quite useful in 

predicting severe market crashes as stated before. 

We developed a market timing strategy which is fully invested in the S&P500 each month whose next-month 

probability forecast of a bear market is below a certain threshold and fully invested in cash otherwise. In order to 

avoid unnecessary transactions due to single data point spikes in our probability forecasts we added another 

constraint to the strategy: it can unwind the stock position only if the probability of a bear market has been over 

the threshold for 3 consecutive months. 
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In the chart below (fig.2), you can see the growth of a 100$ capital invested in a buy and hold strategy (red line) vs 

our market timing strategy (blue line).  

 

 

Fig.2 Growth of 100$ invested in buy and hold strategy (red line) vs market timing strategy (blue line) (Source: yahoo.finance; 

fred.stlouisfed.org) 

 

As you can see, the main feature of our market timing strategy is the ability to avoid consistent losses during the 

most severe market crashes. And this is the advantage that on the long run makes it overperform greatly the buy 

and hold strategy. The Sharpe Ratio of this strategy is 0.646. 

Although being a very basic strategy we believe it offers good results also considering that it has very low costs due 

to a very limited number of transactions (it is simply a buy and hold strategy that divests in anticipation of severe 

market crashes). Furthermore, there is ample room for improvement by adding some more complex feature to the 

trading strategy. For instance, a bear-market-probability dependent leverage. 

 

Bubble Indicators 

A speculative bubble is a situation in which the price of an asset increases above the intrinsic value of the asset. 

Such growth is triggered by expectation of price appreciation and by an imitating process between agents in the 

market. A bubble can end abruptly with a sharp drop in prices, so it is important to be able to detect them in order 

to profit from the ascending prices and to exit the market in time before the crash. 

Here, we want to implement an algorithm which allows us to determine if a certain asset is experiencing a bubble.  

 

First, we assume that during the growing of the bubble the asset price follows the Log-Periodic-Power-Law model, 

or LPPL. The logarithm y = ln (Pt) of price Pt at time t follows: 

 

ln(Pt) = y(t) = A + B(tc − t)z + C(tc − t)zcos[ω ln(tc − t) + φ]  (1) 

where tc is the critical time of the bubble, the most probable time of the crash; A is the expected log-price at tc; 

the exponent z defines the shape of the accelerating increase of y and lies between 0 and 1; ω is the angular 
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frequency of the log periodic oscillations; φ is the phase of the oscillations; B and C measure respectively the 

incidence of the power law and log periodic components on the evolution of the price. 

 

Fig.3 shows a simulation of the evolution of the price under this model. 

 

 

Fig.3 A simulation of the LPPL model; Source: BSIC 

 

The model describes two behaviours:  

A + B(tc − t)z (2) 

a power-law growth in the logarithm of the price which ends at tc, where the first derivative of y with respect to t 

(the expected return) tends to infinity. It is originated by the global herding and imitation of decision of the 

economic agents in the market during the bubble expansion. 

 

C(tc − t)zcos[ω ln(tc − t) + φ] (3) 

A periodic component with increasing frequency because it is expressed in terms of the logarithm of tc − t, the 

time remaining before the burst of the bubble, rather than in terms of tc − t itself. It is generated by the hierarchical 

structure in the social network of investors (there is not the same degree of influence among investors) and by a 

nonlinear mean reversal behavior of fundamental investing styles. 

Our analysis will then consist of two steps: first, we look for a more than linear increase in y, then we look for the 

log-periodic component. 
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Looking for Non-Linearity: Power Law  

In the normal market conditions, the price is expected to grow exponentially, so the logarithm of the price can be 

modelled as 

y = a + bt + σϵt (4) 

where b is the expected rate of return and ϵt is a stochastic noise component with mean=0 and variance=1, σ is 

the volatility of the price, a constant depending on y at time t=0. 

 

As a bubble is a period of faster-than-exponential growth in the asset price, we can extend eq. (4) adding a quadratic 

term, so that 

y = a + bx + cx2 + σϵt (5) 

We want to measure at which extent we can assume that the price is increasing faster than exponentially or, 

equivalently, at which extent we can assume that c ≠ 0. 

 

After having fit both (4) and (5) using least-squares interpolation, we have to compare the two models. We cannot 

compare directly the goodness of fit of the two models because (4) has 3 degrees of freedom (a b and σ), while (5) 

has 4 degrees of freedom (a, b, σ and c). The higher number of degrees of freedom of (5) means that it would 

always fit more closely to the empirical data points than (4) would, but over-fit costs loss of generality. Eventually, 

we will use the Akaike Information Criterion. 

 

The Akaike Information Criterion is a measure of relative quality of statistical models for a given set of data founded 

on information theory.  

Practically speaking, a model with k parameters (k degrees of freedom) is fitted to a collection of data points so 

that the so-called likelihood function L is maximized. Given N data points (xi, yi) and a model ŷ(xi), the least-

squares interpolation is equivalent to maximizing the function 

 

L = ∏
1

√2πσ
exp [

−(yi−ŷ(xi))2

2σ2 ]N
i=1  (6) 

 

Let LMAX the maximum value of the likelihood function obtained when fitting the model, then the AIC value is 

defined as 

AIC = 2k − 2ln (LMAX) (7) 

 

For small data samples of numerosity N, the AIC must be substituted by 

AICc = AIC +
2K(K+1)

N−K−1
 (8) 

 

The rule is to take the model with the lowest AICc. If we define SSR as the sum of squared residuals, for (4) we 

have 

SSRlinear = ∑ (yi − a − bti)
2N

i=1  (9) 

 

and as well for (5) 

SSRbubble = ∑ (yi − a − bti − cti
2)2N

i=1  (10) 
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then, according to the AIC, we derive from (6) that the non-linear model (5) is to be preferred if 

SSRbubble + 2σ2 < SSRlinear (11) 

 

where the term 2σ2 accounts for the additional degree of freedom. Defining the improvement of model (5) relative 

to model (4) as 

D =
SSRlinear−SSRbubble

SSRlinear
 (12) 

 

(11) can be rewritten as  

D >
2σ2

SSRlinear
  (13) 

 

Because σ is the volatility of the stochastic component and is unknown, we proceed to calculate D and compare it 

with past values for the same asset or with the value derived from different assets of the same class to determine a 

threshold Dthr, such that if D > Dthr, we can reject the null hypothesis that c=0. We will call this condition I.1, 

and is necessary but not sufficient for the price to be in a bubble regime. 

 

However, we can use the sample variance of the residuals as an estimator of σ2and implement further the Akaike 

Information Criterion. 

Since we assume that ϵt is a IID Gaussian noise and we use the least-squares interpolation, we can put (6) into (7) 

and obtain (remembering definitions (9) and (10)) 

AICclinear = 6 + Nln(2π) + 2Nln(σ) +
SRRlinear

σ2 +
24

N−4
 (14) 

 

for model (4), and  

AICcbubble = 8 + Nln(2π) + 2Nln(σ) +
SRRbubble

σ2 +
40

N−5
  (15) 

for model (5). 

 

We then define ΔAICclinear and ΔAICcbubble as 

 

ΔAICclinear = AICcmin − AICclinear    ;     ΔAICcbubble = AICcmin − AICcbubble (16) 

 

where AICcmin is the minimum between  AICclinear and  AICcbubble. These two values are used to compute the 

following two probabilities, Plinearand Pbubble: 

 

Plinear = exp(ΔAIClinear 2⁄ ) [exp(ΔAIClinear 2⁄ ) + exp(ΔAICbubble 2⁄ )]⁄  (17) 

Pbubble = exp(ΔAICbubble 2⁄ ) [exp(ΔAIClinear 2⁄ ) + exp(ΔAICbubble 2⁄ )]⁄   (18) 

 

The Akaike Information Criterion is derived from information theory because Pbubble is the probability that the 

non-linear model (5) minimizes the information we expect to lose if we use this model rather than model (4). On 

the other hand, Plinear express the same probability referred to model (4). So, the higher Pbubble, the higher the 

probability that the logarithm of the price is experiencing non-linear growth typical of a bubble. We will define 

again a threshold Pthr, so that if Pbubble > Pthr, we consider it to be a sign of a bubble. We will call this condition 

I.2, necessary but not sufficient for the price to be in a bubble regime. 
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Another sign of a bubble is the sign of c in model (5). According to (2), the second order derivative of y respect to 

t must be positive. So, we consider 

c > 0  (19) 

as a sign of a bubble, as well. We will call this condition I.3 

 

Log Periodicity 

Once we have assured that the power law term in the LPPL model holds, we must look for the fluctuating 

behaviour. In order to do this, we need a time series of prices which has been de-trended from the power law. 

As (2) is an approximation of 1, we start by fitting  

y(t) = A + B(tc − t)z (20) 

 

to the set of prices collected from the market. The fitting is non-trivial because (20) is not linear and the Sum of 

the Squared Residuals function has many local minima, thus algorithms such as Simulated Annealing, Taboo Search 

or Genetic Algorithm should be preferred. We then define the de-trended logarithm of the price as 

 

si =
yi−A

(tc−t)z  (21) 

and we normalize it 

s′i =
si−s̅

σs
     where     s̅ =

1

N
∑ si     σs =

1

N−1
∑(si − s̅)2 (22) 

 

We express s′i in terms of τi, where  

τi = ln (tc − t)  (23) 

so, if LPPL holds, the pairs (s′
i, τi) form a sinusoidal pattern of constant angular frequency ω. 

 

The easiest way to detect a periodic oscillation is by a periodogram. We can express a periodic function as a linear 

combination of sines and cosines of different frequencies.  

  

f(t) = ∑ [ak cos(2πkt) + bksin (2πkt)]+∞
k=1  (24) 

In practice, the periodogram I(ω) of a function shows the importance of frequency ω when the function is 

expressed as sines and cosines: the higher the value of I(ω), the greater is the incidence of sin (ωx) and cos (ωx).  

We will use the Lomb-Scargle Periodogram, which is obtained using the least squares interpolation. For our set of 

N pairs (s′
i, τi), for a given ω the periodogram is calculated as 

 

I(ω) = [∑ s′icos (ωτi+φ̃)N ]
2

∑ cos2(ωτi+φ̃N )
+

[∑ s′isin (ωτi+φ̃)N ]
2

∑ sin2(ωτi+φ̃N )
  (25) 

 

where φ̃ is defined as  

 

tan(2φ̃) = −
∑ sin (2ωτi)N

∑ cov(2ωτi)N
 (26) 
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Even if τi are not equally spaced, we would measure I(ω) at the natural frequencies anyways. We can use as natural 

frequencies ωk 

 

ωk =
2πk

T
       k = 1, 2, … , ⌊N 2⁄ ⌋ (27) 

 

where ⌊∙⌋ is the floor function, N is the number of pairs (s′
i, τi) and T is the total time span of τi, T = max(τi) −

min(τi). n = ⌊N 2⁄ ⌋ is the number of independent frequencies. 

From the periodogram Ik = I(ωk), we focus on the biggest one  

 

IMAX = max{Ik}   for   k = 1, 2, … , n  (28) 

 

because we assume its angular frequency ωMAX  ⇒ I(ωMAX) = IMAX  to be the ω  in (1). However, we are 

interested in determining if it is a consequence of random noise or it bears information. Without getting too 

technical, we want to perform a p-value test in order to reject the null hypothesis that the peak IMAX is originated 

by noise alone. We use the Schwarzenberg-Czerny false alarm probability function defined as 

 

Pr[IMAX > z] = 1 − [1 − (1 −
z σ2⁄

n
)

n

]
n

= p(IMAX) (29) 

 

p(IMAX) is our p-value. We define a threshold α: if p(IMAX) > α, then we can reject the null hypothesis, thus we 

can assume that the price is experiencing a Log-Periodic evolution. We call this condition II, and is a sign of a 

bubble. 

 

Implementation 

Here, we explain a possible implementation of this model to analyse a time series of daily prices. 

Conditions I.1, I.2 and I.3 are based on two interpolations, so we have to choose a time interval of N subsequent 

days and interpolate model (4) and (5).  

From the interpolation of (5), we can directly get the sign of c, which is our condition I.3. Then, we use the residuals 

of the two interpolations to calculate SSRlinear and SSRbubble, from which we get the value of D and the value of 

Pbubble. If the original data is a series longer than N, we can reiterate the calculation for the N past days of each 

day of the original data. We then get three series, for the sign of c, D and  Pbubble, which we want to summarize in 

order to get a synthetic index, showing if there is a bubble or not. We define three binary variables, one for each 

condition, I.1, I.2 and I.3. I.3 will be 1 if c>0. With regards to,  I.1 and I.2, we have to define some threshold levels. 

There are not predetermined levels, so we have to decide how to state them. For D, we can simply define a 

percentage k% and consider the (1-k%)-th percentile as Dthr (so our binary series will be 1 if D > Dthr and 0 

otherwise). Bearing in mind that Pbubble express a probability measure, we can soundly choose a Pthr: the binary 

series I.2 will be 1 if Pbubble > Pthr, 0 otherwise.  

 

Then, we proceed to interpolate (20) to our series of N prices and we use the parameters obtained in this way to 

calculate s′i. Than, we use (25) (26) and (27) to create the periodogram. As before, we have to determine a threshold 

α for the p-value. 
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Here are the results of the analysis of the S&P 500 index from 2013 up to now. We set k%=5%, Pthr=95% and 

α=5%. However, the binary series are heavily dependant on N, the time interval we consider for interpolation. 

 

Fig.4 Green dots correspond to 1, while red dots correspond to 0. 

N=60 

Source: BSIC 

 

Fig.5 Green dots correspond to 1, while red dots correspond to 0. 

N=120 

Source: BSIC  

 

However, this algorithm is effective in analyzing different assets to check which of them is showing a sign of a 

bubble. We chose to focus on the first 250 components of the S&P 500 by market capitalization and analyze their 

behaviour for the last two years. Out of 250, we consider the 125 which showed an increase during the time 

considered. We can divide them: 

 

- 38 have just one positive bubble indicator between I.1, I.2 and I.3; 

- 68 have just two positive bubble indicator between I.1, I.2 and I.3; 

- 19 have I.1, I.2, I.3 equal to 1. 

 

We can consider the last group of stocks as being the most probable candidates of a bubble behavior. If we consider 

condition II (the one involving the log periodic behavior), all of them shows oscillation not originated by random 

noise with α=5%. 

 

 

 

 

 


