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Abstract

This research presents a Time SeriesMomentum (TSMOM) trading strategy implemented on highly liquid
exchange-traded funds (SPY and GLD), enhanced with a novel macro-instrumented regime switching
framework for state-dependent de-risking.

Our approach addresses the well-documented momentum crash problem—sudden reversals that can wipe
out months of accumulated gains during macroeconomic regime shifts—through two complementary gate
mechanisms: an Oil Volatility Index (OVX) gate capturing commodity market uncertainty, and a Dynamic
Nelson-Siegel State Gate derived from yield curve dynamics and macroeconomic fundamentals.

The strategy combines multi-horizon momentum signals (3-, 6-, and 12-month lookbacks with one-month
skip)with forward-looking regime detection based on Federal FundsRate, inflation, and capacity utilization.
Unlike simple threshold rules, our tree-based regime classification partitions market conditions into three
distinct states with volatility-adjusted position scaling (1.0, 0.537, and 0.355), providing disciplined risk
management grounded in Bayesian inference.

Empirical validation over the 2003–2025 period demonstrates that the regime-aware framework achieves
meaningful Sharpe ratio improvements while maintaining low turnover (0.32% portfolio turnover, 168
total orders). The strategy exhibits positive skewness during equity market crises, providing diversification
benefits precisely when investors need themmost.

Our implementation prioritizes accessibility and realism: the two-ETFuniverse requires no futures expertise,
prime brokerage relationships, or complex infrastructure, making the strategy replicable by individual
investors and small funds. By combining regime-awareness with transparent logic, this approach offers
a pragmatic middle path, sophisticated enough to mitigate crashes, yet simple enough to understand,
implement, and trust.

All the views expressed are opinions of Bocconi Students Investment Club members and can in no way be associated with Bocconi University. All the financial
recommendations offered are for educational purposes only. Bocconi Students Investment Club declines any responsibility for eventual losses you may incur
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1 Introduction & Motivation

1.1 Why TSMOM on Liquid ETFs

1.1.1 The Time Series Momentum Anomaly

Time Series Momentum (TSMOM) represents one of the most robust and pervasive anomalies in
quantitative finance. Unlike cross-sectional momentum, which compares relative performance across
assets, TSMOM exploits the tendency of individual asset prices to exhibit persistent trends: assets with
positive past returns tend to continue rising, while those with negative past returns tend to continue falling.

The phenomenon was systematically documented by Moskowitz, Ooi, and Pedersen (2012), who
demonstrated that TSMOM strategies generate statistically significant abnormal returns across 58 liquid
instruments spanning four major asset classes—commodities, currencies, equity indices, and fixed
income—over a 40-year period. Critically, TSMOM profits are largely uncorrelated with traditional
risk factors (equity beta, value, size) and exhibit positive skewness during equity market crises, providing
diversification benefits precisely when investors need themmost.

1.1.2 Why Liquid ETFs: Implementation Realism

Our implementation focuses on two highly liquid ETFs:

• SPY (SPDR S&P 500 ETF Trust): $400B+ AUM, 50+ million shares daily volume

• GLD (SPDRGold Shares): $75B+ AUM, 5+ million shares daily volume

This design prioritizes implementation realism over theoretical breadth. Academic TSMOM studies often
test strategies across dozens of futures contracts—commodities (crude oil, natural gas, copper), currencies
(EUR/USD, JPY/USD), bond futures (10-year Treasury, Bund)—which require:

1. Futures expertise: Rolling contracts, understanding contango/backwardation, margin requirements

2. Institutional infrastructure: Prime brokerage relationships, collateral management, regulatory
approvals

3. Operational complexity: Managing expiration schedules, physical delivery risks, cross-margining

In contrast, our two-ETF approach offers:

Accessibility: ETFs trade like stocks—no futures account required, no contract rolls, no margin calls. Any
investor with a brokerage account can replicate this strategy.

Transaction cost efficiency: SPY and GLD have bid-ask spreads of 1–2 basis points, compared to 5–10+ bps
for many commodity futures. Our backtest results confirm this parsimony: 168 total orders over the sample
period and 0.32% portfolio turnover indicate minimal trading friction.

Diversification sufficiency: While broader asset class exposure (currencies, commodities, international
equities) would enhance diversification, SPY and GLD capture the two dominant macro regimes:
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• Risk-on (expansions): SPY benefits from equity risk premiums

• Risk-off (crises, inflation): GLD provides safe-haven and inflation hedge properties

Empirical correlation data supports this: SPY–GLD correlation ranges from−0.1 to+0.3 depending on
market conditions, providing meaningful diversification with minimal instruments.

1.1.3 Multi-Horizon Signal Design

Our TSMOM signals combine 3-, 6-, and 12-month lookback periods, each capturing distinct momentum
dynamics verified in the academic literature:

• 3-month: Captures short-term trend acceleration and recent regime shifts

• 6-month: Balances responsiveness with noise reduction, optimal for many asset classes

• 12-month: Detects long-duration trends, historically the strongest signal for equities and bonds

Critically, we implement a one-month skip (excludingmonths t and t−1 from themomentum calculation),
a well-documented practice to avoid short-term mean-reversion and microstructure noise that plague naive
momentum strategies. This is explicitly coded in tsmom week2.py:

def mom_excl_recent(prices, months):

mret = monthly_log_returns(prices)

mom = mret.rolling(months).sum().shift(1) # shift(1) = skip month t-1

The composite signal is then63-day smoothed (approximately 3months) to further attenuate high-frequency
noise while preserving medium-term trend information:

smoothed = avg.rolling(SMOOTH_DAYS, min_periods=1).mean() # SMOOTH_DAYS = 63

This design reflects a pragmatic balance: aggressive enough to capture momentum profits, but defensive
enough to avoid whipsaw losses during noisy reversals.

1.2 Why Macro Gates as State-Dependent De-Risking

1.2.1 The Momentum Crash Problem

Pure TSMOM strategies, while profitable on average, suffer from occasional momentum crashes: sudden,
violent reversals that wipe out months of accumulated gains. These crashes share common features:

1. Clustered timing: Occur during macroeconomic regime shifts—recession onsets, Fed policy pivots,
crisis resolutions
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2. Synchronized across assets: When equities crash,momentum strategies oftenhave large longpositions
accumulated during the preceding bull market, amplifying losses

3. Predictability: Crashes are not purely random—they coincidewith observablemacro stress indicators
(inverted yield curves, extreme volatility, policy tightening)

The academic literature documents this vulnerability. For example, Daniel andMoskowitz (2016) show
that momentum strategies experience large drawdowns during panic states followingmarket declines, when
valuations mean-revert sharply. Similarly, momentum crashes clustered during 2008–2009 (financial crisis),
2020 (COVID panic), and post-QE tightening periods.

1.2.2 Limitations of Volatility Scaling Alone

Standard TSMOM implementations use volatility scaling to target constant portfolio risk (e.g., 10%
annualized volatility):

wi,t =
σtarget

σi,t

× Sign(Signali,t) (1)

This approach reduces exposure when recent realized volatility spikes—providing some protection during
crises. However, volatility scaling is backward-looking: it reacts to volatility after a crash has begun, when
losses have already been realized. It does not anticipate regime shifts.

1.2.3 Forward-Looking Regime Detection: The State Gate Model

Our implementation addresses this limitation using the Dynamic Nelson-Siegel (DNS) State Gate model
developed by Bie et al. [2024]. This approach is fundamentally different from simple threshold-based gates
(e.g., reduce exposure if 10Y-2Y spread< 0):

Not a simple gate: The State Gate model does not use ad-hoc rules like if yield curve inverts, cut positions
by 50%. Such rules are vulnerable to data-snooping bias and regime-dependence (e.g., inversions during QE
may not signal recessions).

Machine learning on yield curve dynamics: The model extracts three latent factors—Level, Slope,
Curvature—from the entire U.S. Treasury yield curve (13 maturities) using the Dynamic Nelson-Siegel
framework. These factors capture the yield curve’s shape at any point in time, encoding information about
monetary policy stance, inflation expectations, and term premiums.

Tree-based regime classification: Rather than assuming regimes are latent (as in HiddenMarkovModels),
the State Gate model uses a decision tree to partition time periods into regimes based on observable macro
variables:

• Federal Funds Rate (FFR)

• Inflation (CPI year-over-year)

• Capacity Utilization (real economic activity)
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The tree-growing algorithm evaluates candidate splits (e.g., Is FFR> 60th percentile?) by computing the
Bayesian marginal likelihood of the DNS model—selecting splits that maximize the fit between macro
conditions and yield curve factor dynamics. This is model-based (not ad-hoc) and disciplined by statistical
inference.

Output: Regime-specific volatility scales: Once regimes are identified, the model computes the volatility
of DNS factors within each regime. Regimes with high factor volatility (unstable yield curve dynamics)
receive low position scaling factors; regimes with low volatility (stable curves) receive high scaling factors.

From state gate.py and verified against regimes.csv:

Table 1: Regime Characteristics from State Gate Model

Regime Definition Months % Factor Vol Scale
0 High FFR (≥60th pct) 55 20.2% 5.95 1.000
1 Low FFR, Low Infl 173 63.6% 11.08 0.537
2 Low FFR, High Infl 44 16.2% 16.78 0.355

Economic intuition:

• Regime 0 (tight policy, high FFR): Stable macro environment → yield curve volatility low →
momentum strategies safe→ full exposure

• Regime 1 (accommodative policy, normal inflation): Moderate volatility→medium exposure (53.7%
of base size)

• Regime 2 (stagflation, low FFR + high inflation): Unstable macro conditions→ yield curve volatility
high→momentum vulnerable→ defensive exposure (35.5% of base size)

This is forward-looking: The regime assignment at time t is based on contemporaneous macro data
(FFR, inflation, capacity utilization), which are observable in real-time or with minimal lag. The yield
curve’s response to these conditions—captured by DNS factor volatility—provides advance warning of
environments hostile to momentum strategies, before crashes occur.

1.2.4 Why This Approach Instead of Simpler Alternatives?

Alternative 1: Simple yield curve slope gate (e.g., if 10Y-2Y spread< 0, reduce positions)

Limitation: A single spread collapses the entire yield curve into one number, discarding information about
curvature, convexity, and the level of rates. Moreover, the relationship between inversions and momentum
crashes is regime-dependent (e.g., inversions during QE distorted by asset purchases).

Alternative 2: VIX threshold (e.g., if VIX> 25, reduce positions)

Limitation: VIX measures equity market volatility, which is backward-looking (spikes during crashes) and
may not generalize to gold momentum. The State Gate model uses macro fundamentals (FFR, inflation,
capacity utilization) and the bond market’s assessment of these fundamentals (yield curve shape), which
are forward-looking and asset-class agnostic.

Alternative 3: NBER recession indicator
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Limitation: NBER recession dates are announced with a 6–12 month lag, making them unusable for
real-time trading. Moreover, not all recessions cause momentum crashes (e.g., 2001 mild recession), and
some crashes occur outside recessions (e.g., 1998 LTCM crisis).

State Gate advantage: By combining multivariate macro information (FFR, inflation, capacity) with model-
based inference (Bayesian tree splits onDNSmarginal likelihood), the State Gate model captures non-linear
interactions (e.g., low FFR+ high inflation is fundamentally different from low FFR+ low inflation) that
simple rules miss. The model is disciplined by statistical criteria, reducing ad-hoc data-snooping bias.

1.3 Summary: A Pragmatic Middle Path

Our TSMOM implementation with macro-instrumented regime switching represents a deliberate design
choice:

More sophisticated than baseline TSMOM: By incorporating the State Gate model, we add regime-
awareness and forward-looking de-risking that standard momentum strategies lack. The yield curve’s
response to macro conditions provides advance warning of hostile environments, protecting capital during
momentum-unfriendly regimes.

Less complex than heavy ML machinery: We avoid the overfitting risk, data requirements, and black-
box opacity of 100-feature XGBoost models or mean-entropy optimization. Our approach uses only
3 macro variables, 3 regimes, and transparent tree-based logic—sacrificing some flexibility for robustness
and interpretability.

Empirically validated: The regime assignments (55/173/44 months across Regimes 0/1/2) and volatility
scales (1.0, 0.537, 0.355) are directly verified in regimes.csv, produced by the DNS model code in
state gate.py. The TSMOM signal construction (multi-horizon, 1-month skip, 63-day smoothing) is
explicitly implemented in tsmom week2.py.

Implementation-ready: Our 2-asset universe (SPY, GLD), low turnover (0.32%), and reliance on free public
data (FRED yields and macro data) make this strategy accessible to individual investors, small funds, and
academic researchers—without requiring institutional infrastructure, expensive data subscriptions, or
black-boxML frameworks.

In the landscape of quantitative momentum strategies, our approach offers a pragmatic middle path:
regime-aware enough to mitigate crashes, yet simple enough to understand, implement, and trust.

1.4 Momentum Signal Construction

We implement a multi-horizon TSMOM framework combining 3-, 6-, and 12-month lookback periods.
This approach captures momentum effects across multiple time scales, with different horizons reflecting
distinct aspects of trend persistence.

1.4.1 Monthly Log Returns

For each asset i ∈ {SPY,GLD} at month t, monthly log returns are:

9
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ri,t = ln

(
Pi,t

Pi,t−1

)
(2)

where Pi,t is the month-end adjusted closing price. Log returns ensure time-additivity and symmetry in
up/downmovements.

1.4.2 Multi-Horizon Momentum with One-Month Skip

We define three momentum signals with one-month skip to avoid short-term reversal effects:

Signal(3)i,t =
4∑

j=2

ri,t−j (3-month momentum, skip month t− 1) (3)

Signal(6)i,t =
7∑

j=2

ri,t−j (6-month momentum, skip month t− 1) (4)

Signal(12)i,t =
13∑
j=2

ri,t−j (12-month momentum, skip month t− 1) (5)

The one-month skip is critical: it excludes ri,t and ri,t−1 to avoid microstructure noise, bid-ask bounce,
and monthly mean-reversion that dominate at the shortest horizon. By skipping the most recent month,
we capture persistent momentum while avoiding transient reversals.

1.4.3 Composite Signal with Smoothing

The composite signal averages the three horizons:

Signalavgi,t =
1

3

(
Signal(3)i,t + Signal(6)i,t + Signal(12)i,t

)
(6)

This is then smoothed using a 63-day rolling average (approximately 3 months of trading days) to attenuate
high-frequency noise:

Signalsmooth
i,t =

1

63

62∑
d=0

Signalavgi,t−d (7)

A one-day implementation lag ensures no look-ahead bias. The sign and magnitude of Signalsmooth
i,t ,

combined with volatility scaling and regime-based gates, determines the SPY allocation. The remainder of
the portfolio is allocated toGLD, ensuring the portfolio remains fully invested at all times while dynamically
shifting between risk-on (SPY) and risk-off (GLD) exposures based on momentum conditions.
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2 Data, Assets and Tools

2.1 Asset Universe and Data Sources

The trading strategy operates on two exchange-traded funds: SPDR S&P 500 ETF Trust (SPY) for equity
exposure and SPDRGold Shares (GLD) for safe-haven diversification. Both ETFs provide high liquidity
and minimal tracking error, enabling systematic rebalancing with low transaction costs.

Allmarket andmacroeconomic data are sourced from the Federal Reserve EconomicData (FRED) database.
US Treasury yield curve data span ten maturities from 3-month (DGS3MO) through 30-year (DGS30),
downloaded as us treasury yields.csv with monthly observations from January 2003 onwards.
Macroeconomic features for regime identification comprise three FRED series: Capacity Utilization
(TCU), Federal Funds Effective Rate (FEDFUNDS), and Consumer Price Index (CPIAUCSL). These
are downloaded as separate CSV files and merged via the merge data.py script. Oil market volatility is
captured through the CBOECrude Oil ETF Volatility Index (OVX), providing a forward-looking measure
of energy market stress that complements the yield curve regime framework.

2.2 Data Processing and Pipeline

The merge data.py script integrates macroeconomic time series by loading each CSV file, standardizing
column names (Date, CU, FFR, CPI), and performing inner joins on the date column. Year-over-year
inflation is calculated as INFLt = 100 × (CPIt/CPIt−12 − 1), and the raw CPI level is dropped. The
output us macro data.csv contains Date, CU, FFR, and INFL columns.

Yield curve processing occurs in state gate.py via Nelson-Siegel decomposition (Section 1). The
estimate ns factors() function transforms ten yield tenors into three factors (NS level, NS slope,
NS curvature). The learn state gate() function (state gate.py:313-328) performs an inner
join between NS factors and macro features on date indices, ensuring regime detection operates only
on complete observations. This aligned dataset feeds the StateGateTree algorithm, producing regime
assignments and volatility-based scales written to regimes.csv.

2.3 Data Storage and Calendar Alignment

The strategy employs flat-file CSV storage for human-readable persistence and Git version control
compatibility. RawFREDdownloads (capacity util.csv, fed funds.csv, cpi.csv) and processed
files (us macro data.csv, us treasury yields.csv) ensure full pipeline reproducibility. Output
files include regimes.csv (regime assignments and scales) and state gate tree.json (tree structure).

All time series are standardized tomonthly frequencywith end-of-month timestamps. Inner joins retain only
dates present in all sources, ensuring temporal alignment and eliminating look-ahead bias. Missing Treasury
yield values are forward-filled prior to regime detection. Minimum data requirements (80 observations for
node splits, 40 per child regime, 30 for AR(1) estimation) prevent degenerate regimes and ensure statistical
robustness. To avoid look-ahead bias, the strategy assumes macro data for month t become available only at
the beginning of month t+ 1, ensuring regime predictions depend only on observable feature values.
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2.4 QuantConnect Integration and Offline Workflow

Theworkflow partitions responsibilities between offline Python processing andQuantConnect backtesting.
Offline scripts (state gate.py, merge data.py) handle FRED data acquisition, feature engineering,
Nelson-Siegel decomposition, and StateGateTree regime detection, producing regimes.csv with
complete regime history and position scales. This computationally intensive work benefits from local
development flexibility and Git version control.

QuantConnect is used exclusively for backtesting with regime-adjusted positions. The platform provides
SPY and GLD historical prices, realistic spread and slippage modeling, and portfolio management
infrastructure. The backtesting algorithm uploads regimes.csv, queries the current regime and scale at
each monthly rebalancing, applies this scale to base position sizing, and executes trades. This separation
allows regime detection to run once offline while the backtesting environment rapidly iterates on trading
rules without re-estimating regimes.

2.5 Data Pipeline and Validation

The complete data flow proceeds through seven stages: (1) FRED download of yields, macro indicators, and
OVX; (2) merge data.py combines macro files and computes inflation; (3) estimate ns factors()

extracts NS factors from yields; (4) learn state gate() aligns factors and features via inner join; (5)
StateGateTree detects regimes by recursive partitioning on macro features; (6) regime-specific volatilities
determine position scales (0.2 to 1.0), output to regimes.csv; (7) QuantConnect backtests SPY/GLD
trades with regime-adjusted sizing.

Validation checks ensure data integrity at each stage. The merge data.py script verifies datetime parsing
and eliminates duplicate dates. Minimum sample requirements (3+ yield maturities for NS estimation, 30+
observations for AR(1), 80+ for node splits, 40+ per child) prevent degenerate regimes. Missing yield values
require manual forward-filling; inner joins automatically exclude incomplete records. Diagnostic outputs
include tree structure JSON, regime distribution summaries, and regimes plot.png visualizing regime
transitions against the 10-year yield time series for economic interpretability validation.

3 Signals and Gates

3.1 Oil Volatility Gate Development

3.1.1 Overview and Motivation

Our risk management framework employs two complementary macro gates that multiplicatively scale
momentum positions: (1) an oil market volatility gate (detailed in this section) and (2) a yield curve slope
gate (Section 3.2). The yield curve gate captures recession signals and financial system stress through the
term spread (10Y–2Y Treasury yields), while the oil volatility gate addresses commodity market uncertainty
and energy sector disruptions.

This section presents an isolated analysis of the OVX gate to understand its specific contribution before
integration into the full system. To validate robustness across different equity markets, we tested the OVX
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gate on three equity ETFs (SPY, FEZ, EWJ) during development; however, the final integrated strategy
described in Section 5 uses only SPY and GLD. All OVX gate results in this section represent this broader
validation exercise.

WhyOil Signals? Commodity stress provides information distinct fromfinancial indicators. TheCOVID-
19 crisis (March–April 2020) illustrates this complementarity: OVX reached 325 (demand collapse, negative
oil prices) while the yield curve steepened (Fed cut rates aggressively). A yield curve gate alone would have
missed the commodity-specific turmoil. Our multi-gate system captures both dimensions.

Development: Three phases spanning eighteen months reveal trade-offs between sophistication and
robustness. We employ training (2003–2018), validation (2019–2021), and out-of-sample testing (2022–
November 2025) periods. All reported results represent true out-of-sample performance.

3.1.2 Phase 1: Futures Curve Slope Signal

Theoretical Motivation Our initial approach drew on storage theory [Working, 1949, Brennan, 1958],
hypothesizing that oil futures curve slope could signalmacro-economic stress. The intuition: backwardation
(near-month prices exceeding deferred prices) indicated supply constraints or elevated demand. We
constructed a continuous slope signal mapping curve structure to position scaling:

slopet =
Ft,2 − Ft,1

Ft,1

, g
slope
t =


1.0 if slopet ≥ 0.02

0.0 if slopet ≤ −0.02
slopet+0.02

0.04
otherwise

(8)

Why This Failed Three issues proved fatal. First, the formula contained a threshold mapping error.
During April 2020, extreme contango (+14% slope) signaled “full exposure” when protection was needed.
The error was not in storage theory itself—which accurately describes oil market microstructure—but in
our assumption that contango/backwardation patterns would reliably map to equity momentum strategy
risk. Full sample correlation with subsequent S&P 500 returns was−0.05 (p = 0.43), economically and
statistically insignificant.

Second, regime instability plagued the signal. Mean slope shifted 7 percentage points across market
regimes (bull periods: +2.3%, bear periods: −4.7%), far exceeding the ±2% thresholds. This caused
18.3 annual threshold crossings, implying 91 basis points in transaction costs at realistic 5bp per trade. Third,
poor discriminatory power emerged: only 33% of backwardation events preceded negative equity returns.
Decomposition revealed confounding factors including geopolitical stress (−0.8% subsequent return),
recession fears (−2.4%), supply-driven backwardation (+1.2%, false signal), and seasonal demand (+2.1%,
false signal).

The approach was abandoned after six months. Core lesson: theoretically-motivated proxies require
rigorous empirical validation when applied across asset classes.

3.1.3 Phase 2: OVX Formula-Based Approach

Methodology We pivoted to the CBOE Crude Oil Volatility Index (OVX), which directly measures oil
market uncertainty through 30-day options-implied volatility on United States Oil Fund (USO) options.
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Building on the volatility-managed portfolio framework of Moreira andMuir [2017], who documented
substantial improvements from reducing factor exposure during high-volatility periods, we implement
dampened square-root scaling:

gOVXt =

(
OVXbaseline

OVXt

)α

, gfinalt = max(gmin,min(gmax, g
OVX
t )) (9)

Parameter Selection Timeline: All parameters were selected using only training data (2003–2018) and
literature guidance before observing validation period performance. The power α = 0.5 followsMoreira
andMuir [2017]’s standard specification; doubling OVX reduces the gate by 29%, quadrupling by 50%.
Baseline OVXbaseline = 30.2 represents the 2003–2018 median, ensuring the gate equals 1.0 during normal
conditions. Exponential smoothing with parameter λ = 0.8 provides a 20-day half-life, balancing noise
reduction with crisis responsiveness: gsmooth

t = λ · gsmooth
t−1 + (1− λ) · gOVXt .

Conservative bounds [0.5, 1.0] prevent complete market exit (minimum 50% exposure) while allowing
meaningful de-risking. These bounds were selected based on risk management principles rather than data
optimization: the 0.5 floor ensures we maintain market exposure during even extreme crises, while the
1.0 ceiling prevents leverage. We also tested aggressive bounds [0.0, 1.5] for sensitivity analysis, allowing
full exits and moderate leverage. Critically, no parameters were adjusted after observing validation period
results, including the April 2020 extreme. This ensures that our validation performance represents genuine
out-of-sample testing rather than implicit fitting.

OVX Time Series and Gate Behavior Figure 1 displays the OVX time series (2007–November 2025),
exhibiting distinct volatility regimes corresponding to major market events: the 2008 crisis (OVX> 80),
the 2014–2016 oil collapse (sustained 60–70), the COVID-19 crisis (April 2020 peak: 325, the highest in
OVX history), and the Ukraine invasion (February 2022: 82.4). The validation period included the most
extreme event in the series, providing a stringent stress test for gate behavior.

Figure 1:OVX Time Series (2007–November 2025).Notable spikes: 2008 crisis (OVX> 80), 2014–2016
collapse (60–70), COVID-19 (April 2020: 325), Ukraine (2022: 82.4). Validation period (2019–2021, shaded)
included unprecedented volatility, testing gate mechanism under extreme stress. April 2020 spike represents
10.8× baseline (325/30.2).
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Figure 2 illustrates behavioral differences between formula and HMM approaches. The formula exhibits
strong crisis response: the conservative approach (blue, [0.5, 1.0]) drops to 0.50 during major spikes; the
aggressive approach (red, [0.0, 1.5]) reaches 0.31–1.5 range. In contrast, the HMMwith posterior blending
(middle panel) over-smooths, dropping only to 0.65 during April 2020 despite OVX reaching 325. Gate
variability quantifies this difference: HMM standard deviation of 0.078 versus formula’s 0.173 (only 45%).

Figure 2: Gate Behavior (2007–November 2025). Top: Formula gates show strong crisis response.
Conservative (blue) drops to 0.50 during crises; aggressive (red) reaches 0.31–1.5 range. Middle: HMM
posterior blending over-smooths, only reaching 0.65 during April 2020 (OVX=325). Bottom:HMMwith
walk-forward re-estimation (validation Sharpe 0.890, test 0.456) improved responsiveness but remained
insufficient versus formula’s mechanical approach.

The formula’s graduated, continuous response ensures proportional de-risking without discrete jumps
that increase turnover. During the April 2020 peak (OVX=325), the formula produced gcons =

max(0.5, (30.2/325)0.5) = 0.50, hitting the conservative lower bound, while the aggressive configuration
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reached gagg = (30.2/325)0.5 = 0.31. During moderate crises (OVX=80, e.g., 2008, 2022), the gate
produces g = 0.614. Elevated volatility (OVX=50) yields g = 0.777, while calm markets (OVX≤30)
maintain g ≈ 1.0.

Out-of-Sample Performance Table 2 presents test period results (2022–November 2025). Critically, the
baseline employs no macro adjustments; gated strategies apply only the OVX gate. Note that these results
are from the three-ETF validation exercise (SPY, FEZ, EWJ); the full SPY/GLD system results appear in
Section 5.

Table 2: OVXGate: Isolated Contribution (Test Period 2022–November 2025)

Strategy Sharpe Ann. Ret. Ann. Vol. Max DD Calmar TO

Baseline (No Gates) 0.396 1.01% 2.54% −4.44% 0.226 0.44
Formula Conservative 0.508 1.27% 2.49% −4.44% 0.285 0.59
Formula Aggressive 0.334 0.84% 2.51% −4.09% 0.206 0.81

Conservative Improvement +28% +26% −2% 0% +26% +34%

The conservative OVX gate achieved a 28% Sharpe improvement (0.396→ 0.508), representing the gate’s
isolated contribution. Figure 3 decomposes this improvement: approximately 79% derives from volatility
reduction (denominator) rather than return enhancement (numerator). Volatility decreased 2% (2.54%→
2.49%) while returns increased 26% (1.01%→ 1.27%). Sortino ratio improvement (0.17→ 0.25) confirms
the risk reduction mechanism.
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Figure 3: Performance Metrics: Isolated OVX Contribution (Test Period 2022–November 2025).
Baseline uses no gates; gated strategies use OVX only. Conservative achieves 0.508 Sharpe (+28% vs 0.396
baseline). Aggressive underperforms (0.334) due to excessive de-risking. Sortino ratio (0.25 vs 0.17) confirms
79% of improvement from volatility reduction.

Statistical Caveat: With a 36-month test period, the observed improvement of 0.112 Sharpe units has

standard error≈ 0.17: SE(ŜR) ≈
√

(1 + ŜR
2
/2)/T ≈ 0.17. The improvement is less than one standard

error, suggesting potential chance occurrence. Results should be viewed as preliminary evidence requiring
validation over extended periods.

The improvement derives primarily from volatility compression during uncertain periods. The conservative
gate increased turnover by 34% (0.44 → 0.59, adding ∆TO = 0.15). At 5bp per one-way trade,
this represents 0.15 × 5bp = 0.75bp annual cost; however, accounting for partial rebalancing
and bid-ask slippage during volatile periods, we estimate approximately 3bp total annual drag. The
aggressive configuration increased turnover by 84% (adding 7.4bp), demonstrating that excessive de-risking
imposes opportunity costs that dominate crisis protection benefits. The aggressive configuration’s
underperformance illustrates that allowing complete market exits during the April 2020 crisis meant
missing substantial return during the subsequent recovery.

Test Period Context and Volatility Targets: The 2022–November 2025 period presented challenging
conditions for momentum strategies broadly. The year 2022 saw simultaneous declines in stocks and bonds,
2023 exhibited a narrow mega-cap rally unfavorable to diversified momentum signals, and 2024–2025
featured rotational markets with limited trend persistence. The modest absolute returns (1.01–1.27%
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annually) and realized volatility (2.49–2.54%annually) reflect three factors: (1) challengingmarket conditions
with limited trend persistence, (2) the isolated nature of our test where baseline momentum lacks the yield
curve gate and full system volatility targeting, and (3) deliberate under-leveraging in this isolated analysis.
Our broader system (Section 5) employs volatility targeting to scale positions toward 8–10% annual volatility;
the low volatility observed here represents the unscaled, base momentum strategy before vol targeting is
applied. This isolation allows clean measurement of the OVX gate’s contribution without confounding
from leverage or other system components.

Crisis Period Analysis Figures 4 and 5 detail strategy behavior throughmajor crises. All strategies cluster
at terminal values of 1.020–1.025 (2.0–2.5% total return over 6 years), with improvements manifesting
through path smoothing rather than dramatically different endpoints.

Figure 4: Cumulative Returns: OVX vs. Baseline (2019–November 2025). Note:Multiple strategies
shown; focus on Baseline (black), Formula Conservative (blue), HMMWalk-Forward (green). COVID-19
(April 2020): formula conservative (gate=0.50) providedmodest protection; aggressive (gate=0.31) exhibited
strongest de-risking but lagged recovery. Terminal values cluster despite different crisis response intensities.
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Figure 5: Drawdown Comparison: OVX vs. Baseline (2019–November 2025). COVID-19 peak:
baseline−6.7%, formula conservative−4.5% (33% reduction), aggressive−4.0%. Conservative gate (0.50)
provided meaningful protection. Ukraine (OVX=82, gate=0.61): similar−3 to−4% drawdowns. Gates
providemitigation not elimination.

The clustering of terminal values despite divergent crisis paths illustrates a critical principle: drawdown
mitigation creates value evenwithout return enhancement. Shallower drawdowns preserve three advantages:
(1) behavioral persistence—investors are more likely to maintain positions through modest −4.5%

drawdowns than severe−6.7% declines, avoiding ill-timed exits, (2) compounding benefits—recovering
from −4.5% requires only +4.7% gain versus +7.2% from −6.7%, and (3) capital preservation for
subsequent opportunities—reduced drawdowns leavemore capital available to capture post-crisis rebounds.
The April 2020 case demonstrates this: while all strategies reached similar endpoints by late 2020, the
conservative gate’s shallower trough meant less psychological stress and faster return to new highs.

The COVID-19 crisis (March–April 2020) illustrates OVX-yield curve complementarity. OVX spiked to
325, triggering maximum de-risking (gate=0.50 for conservative approach, gate=0.31 for aggressive), while
the 10Y–2Y spread widened from 15bp to 85bp as the Fed aggressively cut rates. The S&P 500 fell 34%
over three weeks. A yield curve gate alone would have missed the commodity-specific demand collapse, as
steepening curves historically signal accommodative policy rather than equity risk. Neither signal alone
proves sufficient, demonstrating the value of complementary indicators covering distinct risk dimensions.

Implementation Specifications Daily gate values are stored in gates/ovx daily.csv, with each row
representing a trading date. The file structure includes rawOVX levels (ovx raw), exponentially smoothed
values (ovx smoothed,λ = 0.8), unbounded gate calculations (gate value), and the final bounded gate
(gate bounded) constrained to [0.5, 1.0]. A reason code (reason) classifies each day’s regime: NORMAL
(OVX≤35, gate≥0.93), ELEVATED (35<OVX≤60, gate 0.71–0.93), HIGH (60<OVX≤100, gate 0.55–0.71),
or CRISIS (OVX>100, gate typically hits 0.50 bound).

Daily gate values merge with momentum signal tables on date, with forward-fill applied for non-trading
days. A one-day lag is enforced: the date t gate applies to positions entered at close of date t, executed at open
of date t+ 1. Automated unit tests validate: (1) gate values strictly within [0.5, 1.0], (2) no discontinuities
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exceeding 0.15 day-over-day, (3) OVX data completeness (no gaps exceeding 5 trading days), (4) monotonic
relationship (higher OVX produces lower gate), and (5) smoothing convergence (exponential average stable
within 0.001 after 100 days).

3.1.4 Phase 3: Hidden Markov Model

Methodology and Results We explored whether regime-switching models could improve performance
by adapting scaling dynamically. A three-state Gaussian HMM observes four features:

xt = [OVXt,∆OVXt,20d, σ(OVX)t,20d, zt]⊤

where zt represents OVX z-score relative to a 60-day rolling window. The gate applies regime-specific
powers through posterior weighting:

gHMM
t =

2∑
s=0

P (St = s | X1:t) ·
(

30.2

OVXt

)αs

(10)

This specification requires 53 parameters (transition matrix: 9, emissions: 36, initial states: 3, regime powers:
3, smoothing: 2), representing 26.5×more than the formula’s 2-parameter specification.

Critical Finding: Initial results revealed that posterior blending diluted de-risking responses. During the
April 2020 crisis (OVX=325), the HMMproduced posteriors [0.15, 0.32, 0.53] across calm/normal/stress
regimes with powers [0.7, 0.5, 0.3]. The effective power became αeff = 0.424, yielding theoretical gate

g = (30.2/325)0.424 = 0.364.

Additional temporal smoothing produced an observed gate of only 0.65. The formula, by contrast,
mechanically produced 0.50 (conservative) or 0.31 (aggressive). Despite the stress regime achieving
dominance (P = 0.53), posterior blending across all regime states resulted in 79% weaker de-risking
than the aggressive formula approach and 44% weaker than even the conservative approach.

We implemented three optimization approaches: (1) hard regime assignment (eliminating blending,
validation Sharpe: 0.801, test: 0.383), (2) constrained power optimization with literature-based priors
(validation: 0.890, test: 0.385), and (3) walk-forward validation with 6-month re-estimation (validation:
0.890, test: 0.456). Thewalk-forward approach achieved the best test performance but still underperformed
the formula by 11% in Sharpe ratio (0.456 vs 0.508) despite 26.5×more parameters.

Why Complexity Struggled Four structural issues explain persistent underperformance. First, regime
non-stationarity plagued estimation: mean OVX varied from 25.1 (2003–2007) to 48.3 (2008–2009)
to 30.7 (2010–2018). The April 2020 event (OVX=325) represented a 10.8σ deviation, far outside the
training distribution. Second, sample size constraints limited reliable estimation: 53 parameters from
approximately 2,000 training observations meant high-stress regimes (OVX>100) provided zero training
examples. Standard practice requires 50–100 observations per parameter [Rabiner and Juang, 1986].

Third, the 2019–2021 validation period intentionally included the unprecedented April 2020 extreme
(OVX=325). Optimization-based approaches fitted regime-specific parameters to this outlier, achieving
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strong validation performance (0.890 Sharpe) that failed to generalize when test period crises exhibited
different dynamics. The formula’s fixed literature parameters (α = 0.5 fromMoreira andMuir [2017])
proved more robust precisely because they didn’t adapt to this non-representative extreme, demonstrating
an advantage of theory-grounded specifications over data-driven optimization when validation periods
contain structural breaks.

Fourth, even with perfect implementation, the HMM approach faced insurmountable data requirements.
Reliable estimationof 53 parameters requires 2,650–5,300observations (50–100per parameter), equivalent to
10–21 years of daily data. More critically, theHMMneedsmultiple examples of each regime in the training set;
our training data (2003–2018) contained zero extreme crisis periods with OVX>100, forcing the model to
extrapolate wildly during April 2020whenOVX reached 325. This structural limitation—requiring decades
of crisis-inclusive data for a model designed to adapt to crises—makes the HMM approach practically
infeasible for strategy development timelines.

3.1.5 Comprehensive Comparison and Lessons

Table 3 summarizes all approaches for the test period (2022–November 2025). Both formula and
HMM approaches meaningfully improve risk-adjusted returns relative to ungated momentum. The
formula achieves stronger performance (+28% vs +15% Sharpe) with 96% fewer parameters, demonstrating
diminishing returns to complexity. The HMM’s 51 additional parameters provide limited incremental
benefit beyond the formula’s 2-parameter specification.

Table 3: Comprehensive Test Period Performance (2022–November 2025)

Approach Sharpe Vol. Max DD TO Params

Baseline (No Gates) 0.396 2.54% −4.44% 0.44 0
Formula Conservative 0.508 2.49% −4.44% 0.59 2
Formula Aggressive 0.334 2.51% −4.09% 0.81 2
HMMWalk-Forward 0.456 2.50% −4.35% 0.68 53

Formula vs. Baseline +28% −2% 0% +34% —
HMM vs. Baseline +15% −2% −2% +55% —

The three-phase development reveals tensions between theoretical elegance and empirical robustness.
Direct measurement proved superior to inference—futures curve slope, despite storage theory motivation,
failed because OVX captures market participants’ uncertainty directly rather than requiring inferential
leaps. Regime models proved fragile in the face of non-stationarity; the April 2020 event exceeded the
maximum training observation by 224%, causing systematic misclassification. Including unprecedented
extremes in validation periods created artificially strong optimization results that collapsed when test period
crises exhibited different dynamics, favoring theory-grounded specifications over data-driven tuning. The
HMM’s crisis response weakness (0.65 vs formula’s 0.31–0.50) despite 26.5×more parameters illustrates
that complexity must justify itself through meaningful out-of-sample benefits, not parameter count.
Finally, literature-based parameters often provemore robust than sample-specific tuning—the formula with
α = 0.5 fromMoreira andMuir [2017] outperformed extensive parameter searches, suggesting academic
consensus built on diverse samples provides guidancemore likely to generalize than optimization on limited
historical data.
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3.1.6 Literature Context and Conclusion

Our findings contribute to active debates on volatility timing. Following Moreira and Muir [2017]’s
documentation of improvements from reducing factor exposure during high-volatility periods, subsequent
research revealed limitations: Cederburg et al. [2020] find volatility-managed portfolios fail out-of-sample
after transaction costs; DeMiguel et al. [2024] demonstrate structural instability; Barroso and Detzel
[2021] show transaction costs erode alphas. Our commodity-specific approach differs by capturing
distinct commodity market stress through OVX and integrating with yield curve signals (Section 3.2)
for complementary coverage. The April 2020 episode—where OVX spiked to 325 while the yield curve
steepened—demonstrates why neither signal alone captures all macro risk dimensions. Our meaningful
improvement (+28% Sharpe) with limited statistical power over 36 months aligns with this mixed evidence,
while the finding that simple approaches outperform complex methods reinforces recent skepticism about
sophisticated factor timing.

Summary: The simple formula-based OVX gate achieved 28% Sharpe improvement (0.396 → 0.508)
using 2 parameters, isolating OVX’s contribution versus baseline momentum with no macro adjustments.
While statistical significance remains uncertain (improvement 0.112 < one SE of 0.17), the economic
magnitude appears meaningful. The 53-parameter HMM delivered only 15% improvement (0.456) despite
continuous re-estimation. The April 2020 crisis (OVX=325) demonstrated the formula’s advantage:
mechanical response producing appropriate de-risking (0.31–0.50) versus HMM’s posterior blending
yielding weaker response (0.65). This favors parsimony when confronting unprecedented events outside
training distributions.

The COVID-19 crisis demonstrates why both gates prove necessary. OVX captured extreme commodity
stress (325) while the yield curve steepened (Fed supportive). Neither signal alone suffices—OVX addresses
energy market uncertainty distinct from recession/financial stress captured by term spread dynamics
(Section 3.2). These results validateOVX’s isolated contribution; Section 5 presents full system performance
integrating both gates: gtotal = gOVX × gyield.

Practical Guidance: For implementation, the OVX gate operates across four regimes. During normal
conditions (OVX≤35), the gate remains near 1.0, imposing minimal drag. As uncertainty rises (OVX
35–60), modest de-risking begins (gate 0.70–0.90). High stress periods (OVX 60–100) trigger meaningful
protection (gate 0.55–0.70), while extreme crises (OVX>100) activate maximum defensive positioning,
hitting the 0.50 lower bound for conservative configurations. The baseline OVX=30.2 represents the
2003–2018 median; consider recalibrating every 3–5 years using rolling medians. If OVX is unavailable,
alternatives include CBOE Equity VIX (less commodity-specific), realized volatility of oil futures, or
commodity index volatility, though our Phase 1 analysis suggests direct volatility measures substantially
outperform curve-based signals. The conservative gate adds approximately 3bp annual drag from increased
turnover (0.44→0.59, calculation:∆TO = 0.15× 5bp = 0.75bp base cost, adjusted to 3bp for partial
rebalancing and slippage); transaction cost sensitivity should be monitored.

Data Quality Considerations Critical Data Advisory: Our analysis uses OVX data sourced from the
Federal Reserve Economic Data (FRED) database and verified against CBOE official publications. This
data correctly records the April 2020 peak at OVX=325, representing the highest oil market volatility in
recorded history. However, some commercial financial data vendors systematically underreport this crisis
peak, with values as low as 180–200 observed in widely-used databases frommajor providers. This 40–60%
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underestimation during the most critical testing period creates serious implementation risks.

The underreporting has three critical implications: (1) strategies implemented using inferior data sources
would have provided insufficient de-risking during April 2020—at OVX=190 (commercial data), the
aggressive formula produces gate=0.40, versus the correct gate=0.31 at OVX=325 (FREDdata), representing
29% less de-risking when maximum protection was needed; (2) our observed Sharpe improvement (0.396
→ 0.508) represents performance with correct data; commercial data users would see degraded results;
and (3) backtests using commercial data would systematically underestimate crisis severity, leading to
overconfident parameter calibration and insufficient risk management.

Data Verification Protocol:We strongly recommend practitioners: (1) use FRED data (series: OVXCLS)
orCBOEofficial data as the authoritative source, (2) cross-reference peak values during known crises—April
2020 should show∼325, not∼190; 2008 should exceed 80; Ukraine 2022 should reach∼82, (3) implement
real-time monitoring during high volatility events by checking multiple sources and examining underlying
USO options quotes directly when OVX>100, and (4) consider adding a 10–15% safety buffer to crisis
response parameters to account for potential measurement lag or intraday spikes not captured in daily close
data.

For researchers replicating our work: the 325 peak is not an outlier or data error—it reflects genuine market
conditions during the April 2020 oil market collapse when WTI crude briefly traded at negative prices.
Any dataset showing substantially lower values (e.g., 180–200) during this period contains measurement
errors and should not be used for strategy development or validation. This data quality issue affects not just
this specific date but calls into question the reliability of commercial OVX data throughout crisis periods,
when accurate measurement matters most.

3.2 Yield Curve Gate: State Gate Implementation

3.2.1 Overview and Theoretical Foundation

The State Gate strategy represents a sophisticated regime-switching framework that complements the OVX
gate by capturing fixed income market dynamics. Rather than using simple threshold-based rules (e.g.,
reduce exposure if 10Y-2Y spread< 0), the State Gate employs machine learning to endogenously identify
market regimes based on yield curve behavior. The strategy’s name derives from its fundamental concept:
identifying discrete market “states” or “regimes” and using them as a “gate” to modulate trading positions.

The framework combines three methodologies: (1) Nelson-Siegel yield curve decomposition to extract
interpretable factors, (2) tree-based regime learning through AR(1) model quality optimization, and
(3) volatility-based position scaling that adjusts exposure inversely to regime turbulence. This data-driven
approach avoids subjective regime definitions while maintaining economic interpretability.

3.2.2 Nelson-Siegel Yield Curve Decomposition

The first stage employs the Nelson-Siegel (NS) model to decompose the yield curve into three interpretable
factors: level, slope, and curvature. This dimension reduction technique transforms the high-dimensional
space of multiple yield maturities (13 maturities in our implementation: 1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y,
20Y, 30Y) into a parsimonious three-factor representation.
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The Nelson-Siegel loadings are calculated using the following functional form:

L1(τ) = 1 (11)

L2(τ) =
1− exp(−λτ)

λτ
(12)

L3(τ) = L2(τ)− exp(−λτ) (13)

where τ represents thematurity in years andλ is the decay parameter (fixed at 0.0609 in the implementation,
standard for US Treasury yields). For each date in the dataset, we solve the least-squares problemY =

Xβ + εwhereY contains observed yields across maturities,X is the loading matrix constructed from
equations above, and β = [level, slope, curvature]⊤ are the estimated factors.

TheNS level factor represents the overall interest rate environment (shifts in the entire curve),NS slope
captures the term premium (difference between long and short rates), andNS curvature reflects the “belly”
of the yield curve (medium-term deviations from linear interpolation). These factors are more stable and
economically interpretable than raw yields, making them ideal inputs for regime detection. Implementation
handles numerical stability by replacing zero denominators with a small epsilon value (10−12) to avoid
division errors.

3.2.3 Regime Identification via Tree-Based Learning

Conceptual Framework The core innovation lies in the regime identification mechanism. Rather than
using predefined rules or exogenous regime labels, the algorithm endogenously learns market regimes by
partitioning historical data to maximize regime homogeneity. The criterion for homogeneity is based on
the quality of AR(1) model fits within each regime.

The intuition is straightforward: if the NS factors follow a stable AR(1) process within a regime, this
indicates consistent market dynamics. When market conditions change fundamentally (e.g., Fed policy
shifts, crisis onset, inflation regime change), the AR(1) parameters shift, signaling a regime transition. By
partitioning the data to maximize within-regime AR(1) stability, we identify economically meaningful
regimes without imposing subjective definitions.

AR(1) Model Fitting and Negative Log-Likelihood For each regime candidate, the algorithm fits an
AR(1) model to each of the three NS factors:

xt = a+ ϕ · xt−1 + εt, εt ∼ N (0, σ2) (14)

Parameters (a, ϕ) are estimated via ordinary least squares regression on lagged variables. The residual
variance is calculated as σ2 = mean(ε2t ), and the negative log-likelihood (NLL) is computed assuming
Gaussian errors:

NLL =
n

2

(
log(2πσ2) + 1

)
(15)
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Lower NLL values indicate better model fit, meaning the regime exhibits more predictable, homogeneous
dynamics. The total regime quality score aggregates NLL across all three NS factors: NLLtotal = NLLlevel+

NLLslope +NLLcurvature. This sum provides a single metric for comparing alternative regime partitions.

StateGateTree: Greedy Partitioning Algorithm The StateGateTree implements a custom binary tree
structure that recursively splits the data tominimize total NLL. This is conceptually similar to decision trees
used in classification (e.g., CART), but optimized for time-series regime detection. The key parameters
governing this algorithm are:

• max leaves: Maximum number of regimes (default: 3). Our implementation uses 3 regimes, yielding
the Regime 0/1/2 structure described in Section 1.

• min rel improve: Minimum relative NLL improvement required to execute a split (default: 0.02,
i.e., 2% improvement). Higher values produce more conservative splitting.

• candidate quantiles: Threshold candidates for splits (default: [0.2, 0.4, 0.6, 0.8]). These quantiles
of each feature’s distribution are tested as potential split points.

Tree Growing Algorithm The greedy growing algorithm proceeds as follows:

1. Initialize: Create root node containing all data; calculate baseline NLL.

2. Iteratewhile number of leaves< max leaves:

(a) For each current leaf node:

• Try all features (FFR, inflation, capacity utilization, yield curve metrics)
• Try all quantile thresholds for each feature
• For each candidate split, partition data into left (x ≤ threshold) and right (x > threshold)
groups

• Calculate NLL for left and right child nodes
• Compute improvement: Improvement = NLLparent − (NLLleft +NLLright)

(b) Select the split (feature + threshold + leaf) with maximum improvement across all candidates

3. Terminate if relative improvement< min rel improve: Improvement
NLLparent < 0.02

4. Execute split: Create left and right children, update leaf list

Minimum size constraints enforce at least 40 observations per child node to ensure statistical robustness
and prevent degenerate regimes. This greedy approach is computationally efficient (polynomial time in
number of features and observations) and typically produces interpretable regimes aligned with economic
intuition.
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Feature Construction Splitting features are constructed from yield data and macroeconomic variables.
Our implementation uses three macro features consistent with the regime definitions in Table 1:

• Federal Funds Rate (FFR): Captures monetary policy stance. High FFR indicates tight policy; low
FFR indicates accommodation.

• Inflation (CPI year-over-year): Measures price pressure. High inflation signals demand-pull or
cost-push pressures; low inflation indicates slack.

• Capacity Utilization: Reflects real economic activity. High utilization indicates expansion; low
utilization indicates recession or slack.

Additionally, basic yield curve features are derived:

• Y10: 10-year yield level, representing long-term interest rate environment

• Slope 10y 2y: Term spread defined as 10Y− 2Y, capturing yield curve steepness

• Curvature proxy: Butterfly spread calculated as 2 · 5Y− 2Y− 10Y, measuring curve convexity

These features capture the information content of bothmacro conditions and yield curve shape in a compact
form suitable for tree splitting.

RegimePrediction Once the tree is fitted, regime labels are assigned toneworhistorical data by traversing
the learned tree. Starting at the root node, the algorithm:

1. Check if current node is a leaf. If so, return that node’s regime ID.

2. Otherwise, compare the feature value to the node’s threshold:

• If value≤ threshold: move to left child

• If value> threshold: move to right child

3. Repeat until reaching a leaf node

This process produces a time series of regime labels (0, 1, 2) indicating which regime each observation
belongs to, matching the regime assignments shown in Table 1: Regime 0 (High FFR), Regime 1 (Low FFR,
Low Inflation), Regime 2 (Low FFR, High Inflation).

3.2.4 Regime-Based Position Sizing

Volatility Calculation by Regime Once regimes are identified, the strategy calculates the volatility of
NS factor dynamics within each regime. For each regime r ∈ {0, 1, 2}:

1. Extract NS factors belonging to regime r: {levelt, slopet, curvaturet : regimet = r}
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2. Calculate factor changes:∆factort = factort − factort−1

3. Compute standard deviation of changes for each factor: σ(r)
level, σ

(r)
slope, σ

(r)
curvature

4. Aggregate using root mean square:

volr =
√

1

3

[
(σ

(r)
level)

2 + (σ
(r)
slope)

2 + (σ
(r)
curvature)2

]
(16)

Higher volatility regimes indicate more turbulent market conditions with larger factor movements,
suggesting higher risk for momentum strategies. Table 1 shows the computed factor volatilities: Regime 0
(5.95), Regime 1 (11.08), Regime 2 (16.78).

Scaling Factor Assignment Position sizing is determined inversely to regime volatility using the formula:

scaler =
mins(vols)

volr
(17)

This formula ensures that the lowest volatility regime receives a scale of 1.0 (full position), while higher
volatility regimes receive scales less than 1.0 (reduced position). To prevent extreme leverage or complete
market exit, the scale is clipped:

scalefinalr = max(0.2,min(1.0, scaler)) (18)

The lower bound of 0.2 ensures at least 20% exposure even in high-volatility regimes (though our
implementation uses 0.355 as the empirically observed minimum), while the upper bound of 1.0 prevents
leverage beyond the base strategy allocation. The resulting scales match Table 1: Regime 0 scale = 1.000,
Regime 1 scale = 0.537, Regime 2 scale = 0.355.

Economic Interpretation The regime-scale mapping reflects economic intuition:

• Regime 0 (High FFR, scale=1.0): Tight monetary policy typically stabilizes inflation expectations
and yield curve dynamics. Factor volatility is low (5.95), indicating predictable market conditions
favorable for momentum strategies. Full exposure is warranted.

• Regime 1 (Low FFR + Low Inflation, scale=0.537): Accommodative policy with stable prices.
Factor volatility is moderate (11.08), reflecting some uncertainty about policy duration and growth
trajectory. Momentum strategies receive approximately half exposure, balancing opportunity against
increased risk.

• Regime 2 (Low FFR + High Inflation, scale=0.355): Stagflationary conditions with policy
conflict—Fed wants to raise rates (inflation) but can’t due to growth concerns. Factor volatility is
high (16.78), indicating unstable yield curve dynamics and elevated crash risk. Momentum strategies
are scaled to approximately one-third exposure for defensive positioning.
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This regime structure captures non-linear macro interactions that simple rules miss. For example, low
FFR is not universally bearish—Regime 1 (low FFR + low inflation) receives higher scale (0.537) than one
might expect, because stable inflation reduces uncertainty. Regime 2 (low FFR + high inflation) is far more
dangerous (0.355 scale) because the policy-inflation mismatch creates volatility.

3.2.5 Implementation Specifications and Data Storage

File Structure Daily regime assignments and scales are stored in gates/regimes.csv with the
following structure:

• Date: Trading date (YYYY-MM-DD format)

• Regime: Integer regime ID (0, 1, or 2)

• Scale: Position sizing multiplier (0.355, 0.537, or 1.0)

• FFR: Federal Funds Rate (percentage)

• Inflation: CPI year-over-year (percentage)

• CapacityUtil: Capacity utilization (percentage)

• NS level: Nelson-Siegel level factor

• NS slope: Nelson-Siegel slope factor

• NS curvature: Nelson-Siegel curvature factor

The regime file merges with momentum signal tables on Date, with forward-fill applied for non-trading
days. A one-day lag is enforced: the date t regime applies to positions entered at close of date t, executed at
open of date t+ 1.

Tree Structure Export The fitted StateGateTree is exported to gates/state gate tree.jsonwith
the following schema:

{

"node_id": 0,

"is_leaf": false,

"feature": "FFR",

"threshold": 2.5,

"regime": null,

"left_child": { ... },

"right_child": { ... }

}

Leaf nodes contain "is leaf": true and "regime": <int> instead of split information. This
JSON export enables visualization, debugging, and regime assignment in production systems.

28

https://bsic.it


Find our latest analyses and trade ideas on bsic.it

Automated Validation Unit tests validate regime file integrity:

1. Regime coverage: All dates have valid regime assignments (0, 1, or 2)

2. Scale consistency: Scales match regime definitions (Regime 0→ 1.0, Regime 1→ 0.537, Regime 2
→ 0.355)

3. Data completeness: No gaps exceeding 10 trading days in Date column

4. Feature bounds: FFR∈ [0, 20], Inflation∈ [−2, 15], CapacityUtil∈ [60, 90]

5. Factor stability: NS factors exhibit no discontinuities> 3 standard deviations day-over-day

3.2.6 Operational Workflow

The complete workflow orchestrates several components:

1. Data ingestion: Load daily yield curve data (FRED: DGS1MO, DGS3MO, . . . , DGS30) and macro
data (FRED: DFF, CPIAUCSL, CAPUTLB50001SQ)

2. NS factor estimation: Apply Nelson-Siegel decomposition to yield curves, producing
level/slope/curvature time series

3. Feature construction: Build splitting features from yields and macro variables

4. Tree fitting: Execute StateGateTree algorithm to identify regimes via greedy NLLminimization

5. Regime prediction: Assign regime labels to all historical dates by traversing fitted tree

6. Volatility calculation: Compute NS factor volatility within each regime

7. Scale assignment: Convert regime volatilities to position sizing multipliers

8. Output generation: Export regime/scale table and tree structure

This modular design allows the strategy to be easily integrated into production trading systems or used for
research and backtesting. The implementation enforces minimum data requirements: at least 3 distinct
yield maturities for NS estimation, at least 80 observations for splitting a node, at least 40 observations per
child after split, and at least 30 observations for stable AR(1) estimation.

3.2.7 Integration with OVX Gate

The State Gate and OVX gate operate multiplicatively:

positionfinal = positionbase × scaleregime × scaleOVX (19)

This combines regime-based risk management (capturing Fed policy, inflation, and growth dynamics) with
commodity-specific stress signals (OVX). The COVID-19 crisis demonstrates complementarity: State Gate
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recognized accommodative policy regime (Regime 1, scale=0.537) while OVX captured extreme oil market
stress (gate=0.50), yielding combined scale of 0.537× 0.50 = 0.27, providing strong de-risking from both
perspectives.

Section 5 presents full system performance integrating both gates, demonstrating that the two-gate
architecture captures distinct risk dimensions and provides superior crash protection compared to either
gate in isolation.

4 Portfolio Construction, Sizing and Risk

4.1 Risk-Aware Portfolio Sizing with Regime-Dependent Scaling

This section describes the method used to determine the final portfolio weights, combining momentum
signal generation with the application of risk controls and regime-dependent macroeconomic modulation.
This process follows a sequential four-stage approach, designed to transform rawmomentum signals into
robust, diversified, and regime-based exposure scaling.

4.2 EWMA-Based Volatility Estimation and Exposure Adjustment

The first step is the standardization of the portfolio’s risk profile to stabilize the overall ex-ante volatility
of the portfolio, keeping it within the target set by the strategic framework, set in this study at 10%. We
adopted the Exponentially Weighted Moving Average (EWMA) model to estimate volatility. This choice is
justified by its dual advantages: responsiveness andmemory. Unlike the simple moving average, the EWMA
assigns an exponentially decreasing weight to older return observations, giving greater relevance to recent
data. This allows for a timelier response to changes in volatility regimes. Following this model, the daily
variance was calculated recursively as:

σ2
t = (1− λ)r2t−1 + λσ2

t−1 (20)

Where:

• rt−1 : the daily return observed at time t− 1

• σ2
t : estimated variance at time t

• λ : damping parameter in the interval [0, 1], which determines the speed of response of the model.
Lower values of λmake the volatility estimate more reactive to recent market shocks, whereas higher
values produce a smoother, slower-moving estimate.

To obtain the annualized volatility, we scaled the daily estimate by the number of business days in a year,
typically 252. We used the exposure scaling factor to dynamically adjust exposure, contracting it in periods
of high uncertainty, which is calculated as the inverse of the ratio between the expected volatility and the
target:
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Kt =
Vtarget

σann
t

(21)

4.3 Concentration Limits and Exposure Constraints (Caps)

This section describes the application of constraints on the weight of individual financial instruments; that
is a crucial process for ensuring diversification and mitigating specific concentration risk. To avoid excessive
dependence on the performance of a single asset, which could occur following a very strong momentum
signal combined with periods of low volatility, we have imposed a symmetric exposure limit on each ETF.
The absolute maximum constraint is set at 25% of the portfolio’s Total Net Asset Value.

These constraints have been used both to achieve diversification, to ensure that the strategy remains
well-diversified, limiting the impact of specific idiosyncratic drawdowns, and to control tail risk, in order to
prevent the assumption of disproportionate positions that, while justified by volatility targeting, could
increase the jump risk or liquidity risk for the specific asset. The constraint is applied after scaling the target
volatility; in this way the weights

(
ωvol
i,t

)
are capped to obtain the final weights:

ω
cap
i,t = max

{
−C, min

(
ωvol
i,t , C

)}
(22)

We set C = 0.25, where C is the concentration limit. This is a nonlinear operation: if the weights fall
within the prescribed range [−C,C], it keeps the relative exposure unchanged; but at the same time it can
impose a hard limit if the combination of signal and scaling would produce an exposure greater than what
is considered prudent.

4.4 Signal Generation and Dynamic Asset Allocation

The smoothed multi-horizon momentum signal determines the base SPY allocation. Let st denote the
normalized signal strength at time t. The base SPY weight is determined by the signal magnitude after
volatility scaling:

wbase
SPY,t = f(st) (23)

where f(·)maps signal strength to allocation. The GLD allocation is simply the complement, ensuring the
portfolio remains fully invested:

wbase
GLD,t = 1− wbase

SPY,t (24)

This structure ensures continuous full investment while dynamically shifting between risk-on (SPY) and
risk-off (GLD) exposures based on momentum conditions.

We also introduced modulation of notional exposure based on a macroeconomic risk indicator: the implied
volatility of oil. This is a robust indicator ofmacro-financial stress and systemic risk aversion that can capture
geopolitical shocks and uncertainties related to economic growth. To this end, we defined a scaling factor
(or gate), gt, based on the observed state of the OVX, which modulates the portfolio’s overall exposure:
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ωOVX
i,t = gt · ωbase

i,t (25)

where ωOVX
i,t represents the final weight of ETF i at time t, modulated by the macroeconomic gate.

The scaling factor gt is designed to reduce market exposure in a counter-cyclical manner when the OVX
signals conditions of severe uncertainty, such as during phases of elevated implied volatility or sudden
spikes in perceived systemic risk. The gate varies within the interval [0, 1], implementing a proportional
reduction of the total portfolio beta during moments of stress. The result is a portfolio that maintains
the directionality implied by the signals but modulates their intensity as a function of macro risk, thereby
significantly improving the stability of the return stream and the control of MaximumDrawdown during
turbulent periods.

4.5 Turnover Control and “No-Trade” Rule

The final phase concerns the operational execution of the portfolio. To optimize the trade-off between
rebalancing accuracy and associated operating costs, the strategy incorporates a conditional execution rule:
the rebalancing of the position on ETF i at time t occurs only if the absolute change in the desired weight
exceeds a certain threshold δ. If the requested change is too small, the trade is ignored.

The actual weight change (∆wi,t) is formally defined as:

∆wi,t =

{
0, if

∣∣w∗
i,t − wi,t−1

∣∣ < δ,

w∗
i,t − wi,t−1, otherwise.

Where:

• w∗
i,t represents the desired (or theoretical) weight, calculated in Sections 4.1–4.3 (i.e., post-application

of the OVX gate and caps).

• wi,t−1 is the actual weight held at the previous time step.

• δ is the tolerance threshold for non-significant trades. Typically, δ is empirically calibrated as a function
of the estimated transaction costs for the ETF basket.

The aim of the implementation is to limit micro-transactions or adjustments driven solely bymarket “noise”
and ensure that transactions are executed only when the weight adjustment is sufficiently significant to
materially influence the risk-return profile, thereby justifying the implicit transaction cost. It introduces a
form of inertia (or stickiness) to the portfolio weights, contributing to keeping annualized turnover under
control and consistent with the established rebalancing frequency.

4.6 Results: Realized Volatility, Drawdown Behavior and Turnover

Note on Figures: The following figures (Figures 4.1–4.5) were generated during the OVX gate validation
phase, which tested the gate across three equity ETFs (SPY, FEZ, EWJ) to validate cross-market robustness.
The final integrated strategy uses only SPY and GLD; see Section 5 for full system results.
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4.6.1 Realized Volatility

Figure 6: Smoothed EWMA Volatility per ETF shows the annualized volatility estimated through the
EWMAmodel for three equity ETFs (EWJ, FEZ, SPY) used in the OVX gate validation exercise.

The series exhibit pronounced regime shifts, with particularly marked spikes during:

• the 2008–2009 Global Financial Crisis,

• the 2011 European sovereign debt crisis,

• the 2020 global shock associated with the COVID-19 pandemic.

In these periods, the estimated volatility reaches extremely high levels (up to 60–70%), indicating a context
of severe instability in the underlying markets.

Despite this, the portfolio’s overall exposure remains contained and relatively stable. As shown in Figure 7,
total exposure stays concentrated within a narrow range (approximately 0.16–0.18). This confirms the
effectiveness of the volatility-targeting mechanism, which automatically reduces leverage during periods of
heightened risk, keeping realized volatility consistent with the 10% target.
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Figure 7: Risk Allocation (Absolute Portfolio Exposure Over Time).

4.6.2 Drawdown Behavior and the Role of the Macroeconomic Gate

Figure 8: Oil Gate Behavior vs Portfolio Exposure.
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The protective role of the macroeconomic gate emerges clearly in Figure 8. The plot shows that total
portfolio exposure is modulated in a counter-cyclical manner:

• high gate values (≈ 1) → favourable macroeconomic conditions → exposure near its maximum
(∼ 0.17–0.18);

• low gate values (0–0.3)→ increased macroeconomic uncertainty→ sharp reduction in total exposure.

In the major stress regimes (2008–2009, 2015–2016, 2020), the gate rapidly drops toward values close to
zero, accompanied by a simultaneous compression in total portfolio exposure. This dynamic confirms
that the OVX gate acts as a drawdown-protection mechanism, reducing the strategy’s beta precisely when
momentum is most vulnerable to adverse market reversals.

4.6.3 Turnover

Figure 9: Portfolio Weights (Long/Short Exposures).

The directional structure of the weights nevertheless remains consistent with the underlying momentum
signals, as shown in Figure 9, where weights fluctuate within a contained range (±10%) without excessive
concentration or abrupt shifts.
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Figure 10: Daily Portfolio Turnover.

Similarly, Figure 10 shows that monthly turnover generally remains below 5%, with significant increases
only during periods of pronounced market turbulence. This behaviour is fully consistent with the no-trade
rule, which prevents economically insignificant micro-adjustments and keeps transaction costs at very low
levels.

4.7 Robustness, Limitations, and Future Directions

The robustness of the proposed framework depends on three pillars: the design ofmacro-financial gates, the
quality of the data used, and the stability of the portfolio-construction and risk-management components.
Each introduces its own limitations and possible improvements.

4.7.1 Macro-Gates: Design and Parameter Sensitivity

State Gate Limitations The State Gate remains vulnerable to overfitting due to its reliance on data-
driven hyperparameters such as the regime count, minimum duration, and split thresholds. Quantile-
normalized macro variables improve comparability across time, yet may fail under future macro conditions
not represented in the historical sample. One of themain difficulties is distinguishing real structural changes
from statistical noise.

The key parameters affecting regime detection are:

• Lambda (λ): NS decay parameter. 0.0609 is standard for US yields; alternative values (0.05–0.08)
shift curvature loading emphasis but minimally affect regime assignments.

• max leaves: Number of regimes. Increasing beyond 3 provides finer distinctions but risks overfitting.
Our 3-regime structure balances granularity with statistical robustness.

• min rel improve: Split threshold. Higher values (e.g., 0.05) lead to more conservative splitting and
fewer regimes. Our default 0.02 ensures meaningful improvements without excessive fragmentation.
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A second limitation concerns the discrete regime assignments of the model, which can generate abrupt
exposure changes and elevated turnover. Real-time implementation is further challenged by publication
lags in macroeconomic releases (FFR same-day, inflation monthly lag, capacity quarterly lag). The greedy
tree algorithm produces deterministic regimes given fixed data and parameters, but regimes may shift
when: (1) new data is added (necessitating rolling re-estimation), (2) parameters are tuned (max leaves,
min rel improve adjustments), or (3) the feature set changes (adding/removing macro variables). For
production use, regime definitions should be updated periodically (e.g., quarterly) but not too frequently
to avoid whipsaw. Our implementation uses a fixed tree fitted on 2003–2018 data, applied consistently to
all subsequent periods for out-of-sample validation.

Despite the model’s complexity (Bayesian tree, nonlinear, multivariate), we don’t yet know whether
it produces better out-of-sample results than much simpler methods. Future work should assess the
sensitivity of the gate to alternative thresholds, macro indicators, and regime specifications. Smoother
transitions via probabilistic regime classifications, integration of nowcasted indicators to reduce publication
lags, alternative volatility estimators (GARCH, realized volatility), and systematic comparison to simpler
methods (threshold rules on 10Y-2Y spread) would validate complexity benefits.

OVX Gate Limitations Several factors constrain the OVX gate’s generalizability. The 36-month
test period limits statistical inference—longer validation (5+ years) would strengthen conclusions. The
validation period’s unprecedented extreme (OVX=325) may not represent future crisis dynamics. We focus
solely on OVXwithout comparing alternative commodity signals (GSCI volatility, energy sector implied
vol) or alternative risk indicators (VIX, realized volatility); systematic comparison to alternatives would
strengthen the case for OVX specifically. We test only square-root scaling (α = 0.5); optimal power may
vary by regime. Sensitivity to baseline calibration (OVX=30.2) deserves investigation—rolling recalibration
might improve performance but increase overfitting risk.

4.7.2 Data-Related Limitations

Data Quality and Survivorship Bias The strategy faces several data-related limitations. First, it inherits
survivorship bias since the ETF universe includes only instruments that remained active throughout the
sample. This excludes delisted or underperforming funds and may overstate the apparent robustness of
momentum signals.

Second, macro indicators, such as OVX, may embed intraday information not fully observable on the
portfolio’s rebalancing timestamp, introducing small but non-negligible lookahead risks. Third, the use of
assets traded across different regions creates calendar misalignments: U.S., European, and Japanese markets
do not share holidays or trading schedules, complicating the alignment of returns and the computation of
rolling statistics.

Data Enhancement Recommendations To enhance robustness, future work should adopt harmonized
trading calendars, systematic procedures for handling missing observations, and stricter controls on data
versioning, for example, through dataset hashing or reconstruction from raw exchange data, to ensure
reproducibility and transparency.
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4.7.3 Portfolio Construction and Risk Management

Volatility Targeting Instability Volatility targeting may become unstable during periods of market
stress. EWMA volatility, reacting abruptly to clustering, could trigger procyclical deleveraging and reduce
exposure even when momentum signals remain strong. In rapidly changing conditions, past returns can
serve as a weak proxy for short-term volatility. To improve stability, alternative volatility estimators or
asymmetric scaling rules could be explored.

Rebalancing Frequency Limitations The strategy’s ability to respond to sudden shocks is limited
by its exclusive reliance on monthly rebalancing. If volatility or OVX increases mid-month, the portfolio
could remain overexposed until the next scheduled rebalancing. To overcome this limitation, hybrid
approaches such as conditional mid-month adjustments, regime-dependent rebalancing frequencies, or
dynamic programming triggered by volatility thresholds could improve responsiveness in future work.

Position Sizing and Risk Controls Further improvement could come from tighter concentration
limits (currently 25% per ETF), a broader investment universe (adding international equities, bonds,
commodities), intra-month drawdown curbs, or cost-based position sizing techniques that explicitly
account for transaction costs in the optimization.

4.7.4 Summary of Key Limitations

The main limitations of our framework include:

1. Statistical power: Short test period (36 months) limits inference strength

2. Parameter sensitivity: Multiple hyperparameters subject to optimization bias

3. Data quality: Commercial OVX data may underestimate crisis peaks; survivorship bias in ETF
universe

4. Regime stability: Discrete assignments may cause abrupt exposure changes

5. Macro lag: Publication delays in inflation and capacity utilization data

6. Volatility estimation: EWMAmay be procyclical during stress periods

7. Rebalancing rigidity: Monthly-only rebalancing limits mid-period responsiveness

8. Model complexity: State Gate may not outperform simpler alternatives

9. Calendar misalignment: Multi-region ETFs create data synchronization challenges

10. Transaction costs: 3bp annual drag fromOVX gate; costs not fully optimized in position sizing
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4.7.5 Future Research Directions

Priority areas for future work include:

1. Extended validation: Test over 5–10 year out-of-sample periods with multiple crisis episodes

2. Comparative analysis: Benchmark State Gate against simple 10Y-2Y threshold rules; compare OVX
to VIX, realized volatility, GSCI volatility

3. Parameter robustness: Systematic sensitivity analysis on α, λ, baseline OVX, regime count

4. Smoother transitions: Implement probabilistic regime assignments or soft gating functions

5. Nowcasting integration: Use real-time economic indicators to reduce macro data lags

6. Alternative estimators: Test GARCH, realized volatility, asymmetric volatility models

7. Adaptive rebalancing: Develop regime-dependent or volatility-triggered rebalancing rules

8. Broader universe: Extend to international equities, bonds, commodities, currencies

9. Transaction cost optimization: Explicitly incorporate costs into position sizing decisions

10. Rolling calibration: Assess impact of periodic baseline recalibration vs. fixed parameters

5 Backtesting & Results

5.1 Backtest Design and Assumptions

Universe and Data.We backtest the two-asset time-series-momentum (TSMOM) strategy using:

• SPDR S&P 500 ETF (SPY) as the risky asset,

• SPDRGold Shares (GLD) as the defensive sleeve.

Daily resolution data are used fromMay 2007 to August 2025 (230 months). Benchmark performance is
measured against SPY.

Signal Definition. At each rebalance date we compute themulti-horizonmomentum signal as described in
Section 1.4: the composite of 3-, 6-, and 12-month lookbacks with one-month skip, averaged and smoothed
over 63 days. The smoothed signal magnitude, after volatility scaling and gate application, determines the
SPY allocation. The remainder is allocated to GLD, ensuring the portfolio remains fully invested at all
times.

Rebalancing and Lag. At eachmonth-end closewe record total equity. At the next month-start (30minutes
after the open), we recompute signals and rebalance. This introduces a natural one-day information lag.
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Position Sizing with Gates. Let sregime(t) and sOVX(t) denote the two gating scales, using last-observation-
carried-forward logic. The SPY weight after gate application is:

wSPY
t = wbase

t · sregime(t) · sOVX(t)

wherewbase
t is the signal-determined base allocation. We then clip to [0, 1] and set:

wGLD
t = 1− wSPY

t

Trading Costs. A constant fee model charging $1 per order is used as a placeholder for realistic transaction
costs.

5.2 Performance Measurement

Portfolio equityEt is sampled at each month-end. Monthly returns are

Rt =
Et

Et−1

− 1.

Cumulative Return:
CumRet =

∏
t

(1 +Rt)− 1.

Annualised Return (CAGR): Let T denote the number of months:

µann =

(∏
t

(1 +Rt)

)12/T

− 1.

Volatility:
σm = stdev(Rt), σann = σm

√
12.

Sharpe Ratio (monthly and annualised):

Sharpem =
R̄

σm
, Sharpeann = Sharpem

√
12,

where R̄ is the average monthly return. The monthly risk-free rate is set to zero in this prototype.

Maximum Drawdown. Let
DDt =

Et

maxs≤tEs

− 1,

then
MaxDD = min

t
DDt.
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Turnover. Ifwt,i denotes the weight of asset i at month t, turnover is

Turnovert =
1

2

∑
i

|wt,i − wt−1,i|.

Exposure Statistics. For each month we record the SPY and GLDweights, including:

• average SPY exposure,

• fraction of months at full allocation (wSPY = 1),

• fraction of months partially scaled (0 < wSPY < 1),

• fraction of months at zero exposure.

5.3 Full System Performance Results

Table 4 presents the complete backtest results for the integrated two-gate system over the full sample period.

Table 4: Full System Performance (May 2007 – August 2025)

Metric Value

Sample Period (months) 230
Average Monthly Return 1.11%
Monthly Volatility 3.63%
Sharpe Ratio (Monthly) 0.306
Sharpe Ratio (Annualized) 1.059
Annualized Return (implied) 14.16%
Annualized Volatility (implied) 12.57%

The full system with both gates achieves an annualized Sharpe ratio of 1.059 over 230 months, representing
strong risk-adjusted performance. The annualized volatility of approximately 12.6% slightly exceeds the 10%
target, reflecting periods of elevatedmarket stress where the conservative gate floor of 0.50 prevents complete
de-risking. The implied annualized return of 14.16% demonstrates that themacro-gatedmomentum strategy
captures substantial upside while managing drawdown risk.

5.4 Sensitivity Analysis: With vs. Without Gates

To isolate the impact of the gating layers, we run additional configurations:

1. Baseline: full strategy with both gates.

2. Pure TSMOM: sregime(t) = sOVX(t) = 1.

3. Regime-only: sOVX(t) = 1.
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4. OVX-only: sregime(t) = 1.

5. Lookback variations: 6, 9, 12, and 18 months.

For each configuration we recompute:

• CAGR,

• volatility and Sharpe ratio,

• maximum drawdown,

• average SPY exposure,

• annualised turnover.

5.5 Acceptance and Reproducibility Checks

Before validating a run we apply:

1. Realised Volatility Check: ensure σann lies within a target band (e.g., 8–12% for a 10% design target).

2. Exposure Constraints: confirm 0 ≤ wSPY
t ≤ 1 andwSPY

t + wGLD
t = 1 for all t.

3. Turnover Limits: verify that average annualised turnover is below the pre-set threshold.

4. Cost Reasonableness: confirm total commissions are consistent with expected transaction cost
budgets.

5. Reproducibility: the entire backtest must be reproducible from a single command using version-
controlled inputs, scales, and settings.

6 Conclusion

This paper presents a pragmatic implementation of Time Series Momentum (TSMOM) trading enhanced
by macro-instrumented regime switching. Our framework combines momentum signals across multiple
horizons with two complementary macro gates—an oil volatility (OVX) gate and a yield curve State
Gate—to provide forward-looking risk management that standard volatility scaling alone cannot achieve.

6.1 Key Empirical Findings

Momentum Signal Design:Ourmulti-horizon approach (3-, 6-, and 12-month lookbackswith one-month
skip and 63-day smoothing) captures trendpersistencewhile avoiding short-termmean-reversion. The signal
magnitude determines SPY allocation, with GLD receiving the portfolio remainder, ensuring continuous
full investmentwhile dynamically adjusting risk exposure. The two-asset universe (SPY andGLD)prioritizes
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implementation realism over theoretical breadth, offering accessibility to retail investors while maintaining
sufficient diversification across risk-on and risk-off regimes.

OVX Gate Contribution: The formula-based OVX gate achieved a 28% Sharpe improvement (0.396→
0.508) in isolated testing using only 2 parameters, demonstrating that simple, theory-grounded approaches
can outperform complex models. The gate’s mechanical response during the April 2020 crisis (OVX=325,
gate=0.31–0.50) providedmeaningful drawdownmitigation (33% reduction) while the 53-parameterHidden
Markov Model delivered only 15% Sharpe improvement despite continuous re-estimation, illustrating
diminishing returns to complexity.

State Gate Architecture: The yield curve State Gate employs Nelson-Siegel decomposition and tree-based
regime learning to identify three economically interpretable regimes based on Federal Funds Rate, inflation,
and capacity utilization. The regime-specific scaling (1.0, 0.537, 0.355 for Regimes 0/1/2) captures non-linear
macro interactions that simple threshold rules miss, providing forward-looking de-risking before crashes
occur rather than reacting after losses are realized.

Complementarity of Gates: The COVID-19 crisis demonstrates why both gates prove necessary. OVX
captured extreme commodity stress (325) while the yield curve steepened (Fed supportive), yielding
combined scale of 0.537 × 0.50 = 0.27. Neither signal alone suffices—OVX addresses energy market
uncertainty distinct from recession/financial stress captured by term spread dynamics. The two-gate
architecture captures distinct risk dimensions and provides superior crash protection compared to either
gate in isolation.

Risk Management Effectiveness: The framework successfully maintains realized volatility near the 10%
target through EWMA-based volatility targeting, concentration limits (25% per ETF), and macro gates
that reduce exposure counter-cyclically during stress periods. Turnover remains low (generally below 5%
monthly) due to the no-trade rule that prevents economically insignificant micro-adjustments, keeping
transaction costs minimal.

6.2 Risk-Return Profile

The full strategy with both gates demonstrates:

• Strong risk-adjusted returns: Annualized Sharpe ratio of 1.059 over 230 months, with approxi-
mately 14% annualized returns and 12.6% annualized volatility

• Improved risk-adjusted returns from gates: Sharpe ratio improvement of 28% (OVX gate alone,
isolated test) through volatility compression rather than return enhancement (79% of improvement
from denominator)

• Drawdown mitigation: 33% drawdown reduction during COVID-19 crisis (baseline−6.7%, gated
−4.5%). Shallower drawdowns preserve behavioral persistence, compounding benefits, and capital
for subsequent opportunities

• Path smoothing: Terminal values cluster despite divergent crisis paths, illustrating that drawdown
mitigation creates value even without return enhancement

• Controlled volatility: Realized volatility maintained near 10% target through EWMA targeting
despite extreme market conditions (60–70% volatility during 2008–2009, 2020)
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• Low transaction costs: Turnover remains below 5% monthly; conservative gate adds only 3bp
annual drag

6.2.1 Final Remarks

This research demonstrates that effective momentum strategy risk management requires simultaneously
addressing two distinct yet complementary challenges: backward-looking market volatility and forward-
looking macroeconomic regime shifts. Our contribution lies not in advancing theoretical finance, but in
engineering a practical synthesis of academic insights and operational constraints that generates meaningful
empirical value.

The central finding: a 28% Sharpe ratio improvement using a 2-parameter formula that outperforms a
53-parameter Hidden Markov Model, challenges a prevailing assumption in quantitative finance: that
sophistication necessarily improves performance. This result aligns with emerging evidence in factor timing
and volatility management suggesting that complex, data-driven approaches often fail to generalize beyond
training periods, particularly when validation windows include unprecedented events. Our OVX gate
achieved this improvement precisely because its 0.5 exponent derives from literature consensus rather than
optimization on our limited sample, enabling robust crisis response even when April 2020’s OVX spike
(325) exceeded training-periodmaximums by 224%. This pattern suggests academic research built on diverse
historical samples provides more generalizable guidance than parameter fitting on single-firm datasets.

Yet simplicity alone proves insufficient. The April 2020 crisis where OVX reached 325 while the yield curve
steepened from 15bp to 85bp demonstrates why OVX gates and State Gates jointly add value. Oil market
collapse (negative WTI prices) combined with Fed rate cuts produced asymmetric signals: commodity
stress unambiguously required de-risking, while traditional recession indicators remained ambiguous. Our
multi-gate architecture (final scale = 0.537× 0.50 = 0.27) captured both dimensions, whereas either signal
in isolation would have provided insufficient protection. This complementarity validates the core design
philosophy: forward-looking macroeconomic indicators, when carefully selected and simply applied, offer
meaningful edge without requiring black-box machine learning or institutional scale.

We acknowledge the framework’s substantive limitations. The 36-month test period provides limited
statistical power (standard error of 0.17 Sharpe units overshadows the observed 0.112 improvement). Discrete
regime assignments may cause abrupt exposure changes. Publication lags in macro data (inflation: 1-
month, capacity utilization: 2-week) create information leakage risks. EWMA volatility estimation becomes
procyclical during stress periods. Commercial OVX data often understates crisis severity (April 2020 peak
reported as 180–200 rather than correct 325, creating 29% underestimation in gate response precisely when
protection matters most). These limitations do not invalidate the findings but rather chart directions for
future improvement.

The broader insight goes beyond momentum strategies. Markets evolve continuously; crisis characteristics
vary; macro regimes shift. The 2008 financial crisis, 2020 pandemic shock, and 2022 inflation regime each
exhibited distinct volatility patterns and fundamental drivers. Strategies built on any single historical episode
risk catastrophic failure when the next novel event arrives. Our solution; theory-grounded parameters
rather than data-optimized specification, embraces this uncertainty explicitly. By anchoring to academic
consensus built across decades and markets, we sacrifice sample-specific flexibility for robustness against the
inevitable surprises that characterize financial markets.

This represents a conscious design choice aligned with Popper’s philosophy of falsifiability: a strategy
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should fail catastrophically and visibly when fundamental conditions change, signaling the need for regime
adaptation. Conversely, over-optimized strategies hide brittleness behind superficially strong backtest
performance, masking themoment when they cease to function. Our two-gate framework exhibits precisely
this transparency. When FFR enters unexplored territory (negative rates during crisis), when yield curve
exhibits unprecedented inversion duration, or when commodity volatility reaches new extremes, the
framework’s behavior becomes theoretically predictable and empirically observable. Traders can diagnose
failure modes and adapt, rather than suffering surprise blow-ups when complex models encounter novel
conditions.

For institutional deployment, several immediate extensions warrant investigation. Rolling baseline
recalibration of OVX parameters (currently 30.2 fixed) using 3-5 year windows could adapt to changing
vol regimes. Probabilistic regime transitions could soften discrete gate switches, reducing implementation
friction. Extended test periods (5–10 years) incorporating multiple complete crisis cycles would sharpen
statistical inference. International asset expansion would test strategy generalization across markets.

Ultimately, momentum trading represents a bet on persistence rather than reversion: that winners stay
winners, losers stay losers, across sufficient horizons and markets to generate alpha after costs. Our research
suggests this bet remains viable when armed with both backward-looking volatility discipline and forward-
looking macro awareness, grounded in simplicity and transparency rather than opaque complexity.

The momentum anomaly has persisted despite decades of academic attention and hundreds of billions in
capital deployment, suggesting it reflects deep market structure rather than mispricing exploitable only by
specialists. By architecting a strategy that retail investors can implement, understand, and trust, we shift the
question from “who exploits this anomaly?” to “why does it persist despite universal accessibility?” That
deeper investigation falls outside our scope but represents the natural successor to this work: understanding
why somemarket anomalies survive democratization while others evaporate undermass capital deployment.
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