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Abstract

This project develops a coherent framework for modelling the implied volatility surface by combining
stochastic volatility, local volatility, and smile-consistent interpolation techniques. Starting from market
conventions, risk-neutral valuation, and vanilla option pricing, the work introduces the volatility surface as
a mapping from strikes and maturities to implied volatilities and formalizes the no-arbitrage constraints it
must satisfy. The Heston model is then used to generate parametric volatility surfaces and to illustrate how
each parameter affects skew, smile, and term structure, while the SVI family of parameterizations provides
a flexible, arbitrage-aware representation of implied total variance across log-moneyness. In parallel, the
Dupire local volatility framework links the implied surface to a state- and time-dependent instantaneous
volatility, and the Vanna–Volga methodology is presented as a practical, market-driven correction to
Black–Scholes prices that reproduces smile features from a small set of liquid quotes. Together, these tools
yield a practical calibration and construction pipeline that can fit observed volatility data across asset classes,
enforce static arbitrage conditions, and generate robust surfaces suitable for pricing and hedging both
vanilla and first-generation exotic options.
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1 Preliminaries

1.1 Notation and Conventions

In options and volatility surface modeling, it is essential to have a clear understanding of standard notation
and market conventions. The spot price, denoted asS0, refers to the current market value of the underlying
asset. The strike price, often written asK , is the agreed-upon price at which the option can be exercised.
Expiry, or maturity, designates the specific date when the option contract terminates, and at which payoff is
determined. Time to maturity is sometimes denoted by T , calculated as the duration between the current
time and expiry.

The forward price, F , is the contractually agreed future price of the asset, factoring in spot price, interest
rates, and any dividends. The risk-free rate appears as r, used in discounted cash flow calculations and in
models like Black–Scholes. Implied volatility, denoted as σIV, is a critical measure derived by inverting the
Black–Scholes formula using observed market prices for options, settling on the volatility that best fits
market pricing.

Options are classified primarily into calls and puts. A call grants the holder the right to buy the asset at
strike, while a put grants the right to sell. These basic definitions set the groundwork for pricing models and
for understanding the construction of the implied volatility surface, which is defined as a mapping between
all strikes and expiries and their corresponding implied volatilities. Accordingly, quoting conventions differ
across markets: equity surfaces are commonly quoted by strike, while FX markets often quote by option
delta, impacting data interpretation and modeling approaches.

The main purpose of the paper is to illustrate the theoretical foundations of these techniques, and,
in addition, we implement them on SPX data from June 2023 retrieved from WRDS as an empirical
application.

1.2 Probability and Stochastic Calculus

The basics of stochastic calculus are at the heart of modeling asset price dynamics and deriving option
prices. A standard approach is to model the underlying asset using geometric Brownian motion:

dSt = µSt dt+ σSt dWt

where St is the asset price, µ its drift, σ its volatility, andWt is a standard Brownian motion representing
the randomness in the price evolution. For a functionG(S, t) of the price and time, Itô’s lemma gives its
stochastic evolution:

dG =
∂G

∂t
dt+

∂G

∂S
dS +

1

2

∂2G

∂S2
σ2S2 dt

This result is essential for deriving the Black–Scholes PDE and for working with processes beyond simple
Brownian motion.

No-arbitrage pricing in these models often uses a risk-neutral measure, where expected returns are
discounted at the risk-free rate rather than the actual drift µ. Martingales play a critical role; under the
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risk-neutral measure, the discounted asset price must be a martingale:

EQ
[ ST

P (0, T )

∣∣∣Ft

]
= St

whereQ denotes the risk-neutral measure and P (0, T ) is the discount factor for time T .

A general Itô process can be written as

dxt = a(xt, t) dt+ b(xt, t) dWt

where the drift a(xt, t) and volatility b(xt, t) can depend on the current state and time.

Well-posedness requires Lipschitz conditions and suitable growth bounds on these functions to guarantee
a solution exists. For option pricing, these mathematical tools allow one to transition from modeling the
asset price to expressing the price of derivatives as solutions of partial differential equations or expected
values under the risk-neutral measure.

1.3 Fundamentals of Risk-Neutral Pricing

Modern option pricing is grounded in the idea that, in an arbitrage-free market, the value of a derivative is
determined by its expected payoff discounted at the risk-free rate, calculated under the so-called risk-neutral
measure. This approach guarantees consistency with market prices and the principle of no-arbitrage,
forming the foundation of both analytical formulas and numerical models.

In practice, let us consider a European option with maturityT and payoffHT (for example, a call option has
HT = max(ST −K, 0)), with the present time denoted as t ≤ T . If r is the continuously compounded
risk-free rate, the fair value of the option at time t is given by:

Ct = e−r(T−t)EQ[HT | Ft]

EQ[·] denotes expectation under the risk-neutral measureQ, and Ft is the information available up to time
t. The discount factor e−r(T−t) ensures the payoff is fairly valued in today’s terms.

The principle can be interpreted in two tightly linked ways:

• As a risk-neutral expectation (no-arbitrage pricing) of future payoffs, discounted at the risk-free rate.

• As the unique solution to a partial differential equation (like the Black–Scholes PDE) satisfied by the
option price, with the terminal condition matching the option’s payoff.

The famous Black–Scholes formula arises directly from these ideas, assuming the asset follows a geometric
Brownian motion and there are no arbitrage opportunities, the price of a European option is fully
determined by its expected discounted payoff under risk-neutral probabilities. This framework also
underpins binomial tree models and Monte Carlo simulation approaches, where the expected value of the
payoff is computed by averaging over all risk-neutral scenarios and then discounting back to present value.

5
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1.4 Vanilla Options and Implied Volatility

Vanilla options, mainly European calls and puts, are the starting point for understanding implied volatility
and its surface. Under the Black–Scholes model, these options can be priced by a closed-form formula,
meaning you can directly compute the fair option price using market data and the model’s parameters,
rather than relying on simulations or numerical methods.

The key idea is that, given the input parameters (spot price S, strikeK , risk-free rate r, time to expiry T
and volatility σ), the price of a European call is given by the Black–Scholes formula:

C = SN(d1)−Ke−rTN(d2)

where:

d1 =
ln(S/K) +

(
r + 1

2
σ2
)
T

σ
√
T

, d2 = d1 − σ
√
T

Here,N(·) is the cumulative distribution function of the standard normal distribution.

Implied volatility σIV is the unique volatility value that, when plugged into the Black–Scholes formula,
makes the modeled price equal to the observed market price of the option. Market practitioners observe
actual option prices and use numerical methods to solve for σIV, as it usually cannot be “solved for” in
closed form. The result is a mapping across strikes and expiries, called the implied volatility surface.

The volatility surface displays how implied volatility changes with strike and time to expiry. This is crucial
for practitioners: even though Black–Scholes assumes constant volatility, markets consistently show “smiles”
and “skews”, meaning implied volatility varies across different strikes and maturities.

1.5 Static No-Arbitrage Conditions (with Breeden–Litzenberger Theorem)

To ensure European option prices (and the resulting implied volatility surface) are free of static arbitrage,
several key mathematical conditions must be satisfied:

1. Positivity and Monotonicity

• Option prices must be non-negative: for all strikes and maturities, the price of a call option
must satisfyC(K,T ) ≥ 0.

• Monotonicity in strike: as the strike increases, the price of a call decreases:

∂C(K,T )

∂K
≤ 0.

2. Convexity in Strike

Convexity: the price of a call option as a function of strike must be convex:

∂2C(K,T )

∂K2
≥ 0.

This has a probabilistic meaning via the Breeden–Litzenberger theorem:
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The second derivative of the European call price with respect to strike is the risk-neutral
probability density at strike

∂2C(K,T )

∂K2
= pT (K)

Here, pT (K) is the risk-neutral probability density for the underlying asset at maturity T and strike
K . Hence, convexity ensures this density is non-negative, which is necessary for the absence of
arbitrage.

3. Monotonicity in Expiry

Option prices must not decrease with expiry: for fixed strike, increasing expiry should not decrease
the price:

C(K,T2) ≥ C(K,T1) for T2 > T1.

This prevents “calendar spread” arbitrage, where a longer-dated option would be somehow cheaper
than a shorter-dated one.

1.6 Smile Dynamics & Quoting Conventions

1. Smile and SkewDynamics Beyond static arbitrage, a crucial aspect of implied volatility surfaces is their
smile and skew dynamics, how volatility varies as you move across strikes or as market conditions change.
The “smile” refers to cases where implied volatility is highest for deep in-the-money or out-of-the-money
options, while the “skew” describes asymmetric changes, such as implied volatility increasing steadily for
out-of-the-money puts or calls.

2. Sticky-strike vs Sticky-delta A central issue is how the surface reshapes when the underlying asset
moves.

• In sticky-strike quoting, the surface is fixed with respect to strike; as spot moves, the implied volatility
for a given strike remains the same.

• In sticky-delta quoting (common in FX), the surface is anchored by delta; as spot changes, the option
moves along the surface so its delta remains constant.

3. Dividend and Foreign Rate Adjustments For assets with dividends or in cross-currency markets,
forward price and discounting conventions affect delta definitions and surface shape. Practitioners must
carefully map market-quoted volatilities onto their modeling surface, adjusting for these conventions.

4. Term Structure Intuition Over different expiries, volatility surfaces typically show a “term structure”,
for example with short-term volatility reflecting urgent news and longer-term volatility anchored to historic
averages or implied market uncertainty.
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1.7 The Volatility Surface Problem

Observed option prices for a range of strikes and expiries yield a grid of implied volatilities. Instead of a
single value, we get a surface:

σIV(K,T )

where implied volatility is a function of both strike and time to expiry. This empirical surface reflects the
risk preferences and price formation mechanisms of the actual market, which fundamentally differ from
the lognormal assumptions of Black–Scholes. Smiles and skews, which are persistent features in equities,
interest rates, FX, and commodities, signal these discrepancies.

The challenge, then, is to construct a continuous, arbitrage-free implied volatility surface from discrete
option quotes. This surface must:

• Capture observed smiles/skews and term structure patterns.

• Enable pricing for options at intermediate or extrapolated strikes/maturities.

• Respect no-arbitrage conditions in both strikes and expiry.

Solution Approaches Constructing this surface is itself an extensive modelling task. Techniques fall
broadly into two categories:

1. Models for the underlying dynamics: local volatility models, stochastic volatility structures (like
Heston and SABR), and jump-diffusion processes calibrate parameters so their theoretical prices
best fit the observed market IV grid.

2. Direct surface modeling: parametric, semi-parametric, or non-parametric interpolation schemes
(SVI, splines, etc.) fit a smooth, arbitrage-free surface to the market data.

Both approaches must deal with practical concerns:

• Enforcing arbitrage-free conditions in strike and time.

• Robust extrapolation outside the core region.

• Calibration algorithms and fitting error control.

The resulting volatility surface becomes the backbone for pricing, risk management, and hedging, used by
traders and risk managers not only for vanilla options but as a key input for exotics, portfolio risk analysis,
and scenario testing.

8
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2 Heston

2.1 Introduction: Heston Model

TheHestonModel (1993) represents one of the most important extensions of the Black–Scholes framework.

While the Black–Scholes model assumes that asset returns are normally distributed with constant volatility,
empirical evidence shows that this assumption fails to capture key features observed in financial markets,
notably the volatility smile and skewness of implied volatilities.

Heston proposed a model where volatility itself is stochastic, meaning it evolves randomly over time
instead of remaining fixed.

The model introduces a correlation between the asset’s price and its volatility, allowing it to reproduce the
asymmetry of option prices across different strikes.

From Constant to Stochastic Volatility

• The Black–Scholes model performs poorly for assets such as currencies or equities during volatile
periods.

• Real-world volatility is not constant but time-varying and mean-reverting.

• Existing stochastic volatility models (Hull & White, Wiggins, Scott) lacked a closed-form solution,
making them computationally heavy.

• Heston’s approach provides a semi-closed analytical solution using characteristic functions,
allowing for efficient calibration to market data.

This framework directly connects the behavior of volatility to the observed deviations in market option
prices, specifically, how option values diverge from Black–Scholes predictions across different strikes and
maturities.

Moreover, the model’s structure is versatile, allowing it to be naturally extended to applications such as
bond and foreign currency options, demonstrating its broad analytical flexibility.

2.2 Theory behind

The Heston model builds on the idea that volatility is not constant but stochastic, meaning it changes
randomly over time.

It captures two essential aspects of financial markets:

1. Mean reversion: volatility tends to revert to a long-term average.

2. Correlation: volatility and asset returns are often negatively correlated.

9
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2.2.1 Stochastic Processes

The model assumes that the asset price St and its variance vt follow two coupled stochastic differential
equations:

dSt = µSt dt+
√
vt St dW1t

dvt = κ(θ − vt) dt+ σ
√
vt dW2t

dW1t dW2t = ρ dt

where:

Parameter Meaning
κ Speed of mean reversion
θ Long-term mean of variance
σ Volatility of volatility
v0 Initial variance
ρ Correlation between price and volatility shocks

This formulation ensures that vt remains positive (Cox–Ingersoll–Ross process) and fluctuates around its
long-run average θ.

2.2.2 Risk-Neutral Valuation

Under the risk-neutral measure, the drift of the asset becomes r − q (risk-free rate minus dividend yield),
and a volatility risk premium λ is introduced:

dvt = κ(θ − vt) dt+ σ
√
vt dW

Q
2t

dW1t dW
Q
2t = ρ dt

The adjusted (“risk-neutral”) parameters are:

κ∗ = κ+ λ, θ∗ =
κθ

κ+ λ

These determine how volatility evolves under the pricing measure, influencing option values rather than
actual market paths.

2.2.3 Pricing Framework

Any derivative U(S, v, t) must satisfy the following partial differential equation derived from no-
arbitrage arguments (Black–Scholes, Merton): Solving this PDE directly is complex, but Heston derived a
semi-closed form solution using the characteristic function of the log-price process — a breakthrough
that made stochastic volatility models practical for calibration

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ rS

∂U

∂S
+
[
κ(θ − v)− λ(S, v, t)

]∂U
∂v

− rU +
∂U

∂t
= 0
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2.2.4 European Call Option Pricing

A European call option with strike priceK and maturity T satisfies the pricing PDE derived earlier, subject
to the following boundary conditions:

U(S, v, T ) = max(0, S −K), U(0, v, t) = 0,

and
∂U

∂S
(∞, v, t) = 1, U(S, 0, t) = 0, U(S,∞, t) = S.

Solution Form By analogy with the Black–Scholes model, Heston proposed that the option price can
be expressed as:

C(S, v, t) = SP1 −Ke−r(T−t)P2

where the first term represents the present value of the underlying asset (weighted by P1), and the second
term represents the discounted strike price (weighted by P2).

Both P1 and P2 are risk-adjusted probabilities under two different measures.

It is convenient to rewrite the equations in terms of the logarithm of the asset price:

x = ln(S)

Partial Differential Equations for P1 and P2

Substituting the assumed solution into the general PDE leads to two coupled PDEs, one for each Pj with
j = 1, 2

1

2
v
∂2Pj

∂x2
+ ρσv

∂2Pj

∂x∂v
+

1

2
σ2v

∂2Pj

∂v2
+ (r + ujv)

∂Pj

∂x
+ (aj − bjv)

∂Pj

∂v
+
∂Pj

∂t
= 0

where:
u1 =

1

2
, u2 = −1

2

and the parameters are defined as:

a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ

The terminal condition for each probability function is given by:

Pj(x, v, T ; lnK) = 1{x≥lnK}

2.2.5 Characteristic Function Solution

To obtain a closed-form expression for the option price, Heston reformulates the model in terms of the log
of the asset price, x = ln(S).

11
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Under the risk-neutral measure, the dynamics of xt and vt are given by:

dxt = [r + ujvt] dt+
√
vt dz1(t)

dvt = [aj − bjvt] dt+ σ
√
vt dz2(t)

where the parameters uj, aj, bj are defined as before, and dz1, dz2 are correlated Wiener processes with
correlation ρ.

The conditional probability that the option expires in the money is:

Pj(x, v, T ; lnK) = Pr[x(T ) ≥ lnK | x(t) = x, v(t) = v]

Characteristic Function Representation Although these probabilities are not available in closed form,
they can be obtained through the characteristic function fj(x, v, T ;ϕ), which satisfies the same PDE as
Pj but under Fourier transformation.

The characteristic function solution is expressed as:

fj(x, v, t;ϕ) = exp
(
Cj(τ ;ϕ) +Dj(τ ;ϕ)v + iϕx

)
with:

Cj(τ ;ϕ) = riϕτ +
a

σ2

[
(bj − ρσiϕ+ d)τ − 2 ln

(1− gedτ

1− g

)]
Dj(τ ;ϕ) =

bj − ρσiϕ+ d

σ2

( 1− edτ

1− gedτ

)
and

g =
bj − ρσiϕ+ d

bj − ρσiϕ− d
,

d =
√

(ρσiϕ− bj)2 − σ2(2ujiϕ− ϕ2).

Recovering Risk-Neutral Probabilities Once the characteristic function is known, the risk-neutral
probabilities P1 and P2 are obtained by Fourier inversion:

Pj(x, v, T ; lnK) = 1
2
+

1

π

∫ ∞

0

ℜ
[
e−iϕ lnKfj(x, v, T ;ϕ)

iϕ

]
dϕ

The integrand is a smooth, rapidly decaying function that can be efficiently evaluated numerically. The
equations before together provide the semi-closed form solution for European call options under
stochastic volatility.

2.2.6 From Heston Model to the Volatility Surface

The closed-form Heston formula allows us to compute European option prices

C(S0, v0, 0;K,T )

12
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for any strikeK and maturity T .

However, markets quote implied volatilities, so the connection to the volatility surface comes from
Black–Scholes inversion. Therefore, the bridge between the Heston model and the volatility surface is
the concept of implied volatility.

Implied Volatility Given a Heston price CHeston(K,T ), the Black–Scholes implied volatility is
defined as the value σimp(K,T ) such that:

CBS(S0, K, T, σimp) = CHeston(K,T ).

Thus, the Heston-implied surface is the mapping:

(K,T ) 7→ σimp(K,T ).

Since the Heston call price is obtained from:

C = S0e
−qTP1 −Ke−rTP2,

with P1, P2 computed via Fourier inversion, the implied volatility surface is fully determined by the five
model parameters:

(κ, θ, σ, ρ, v0).

2.2.7 Structure of the Volatility Surface Under Heston

Each parameter affects the geometry of the implied volatility surface in a precise way:

1. Correlation ρ controls the skewness

Negative correlation (ρ < 0) produces the familiar downward-sloping skew, typical in equity markets.

Mathematically, ρ enters the characteristic function through the terms−ρσiϕ and (ρσiϕ−bj)2, modifying
the asymmetry of the return distribution.

2. Volatility of volatility σ controls the curvature (smile)

Large σ increases kurtosis, leading to fatter tails and a more pronounced smile.

It appears quadratically in:

d =
√

(ρσiϕ− bj)2 − σ2(2ujiϕ− ϕ2)

3. Mean reversion speed κ and long-run variance θ

They control how volatility evolves in the term structure:

• High κ→ faster reversion → short-dated options dominated by v0, long-dated by θ

• Low κ→ more persistent volatility → stronger term structure
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This follows from the variance dynamics:

dvt = κ(θ − vt) dt+ σ
√
vt dW2t.

4. Initial variance v0 controls short-term ATM vol

For T → 0, the implied volatility converges to:

σimp(K = S0, T ) −→
√
v0.

2.2.8 Calibrating the Heston Model to the Market Surface

To match market implied volatilities, one must solve the optimization problem:

min
κ,θ,σ,ρ,v0

∑
i,j

wij

(
σHeston

imp (Ki, Tj)− σmarket
imp (Ki, Tj)

)2
.

Where:

• (Ki, Tj) are the grid points of the implied volatility surface

• wij are optional weights (e.g., vega weighting)

The implied volatilities σHeston
imp are obtained by:

1. computing the Heston price

2. computing the Black–Scholes implied volatility

The Heston model is thus parametric: the entire volatility surface emerges from only five parameters.

2.3 Practical application

2.3.1 Mathematical Steps to Generate a Heston Volatility Surface

For each strikeK and maturity T :

1. Compute characteristic function

fj(x, v, T ;ϕ) = exp
(
Cj(T ;ϕ) +Dj(T ;ϕ)v + iϕx

)
with:

x = ln(S0).

2. Compute probabilities Pj

Pj =
1

2
+

1

π

∫ ∞

0

ℜ
[
e−iϕ lnK fj(ϕ)

iϕ

]
dϕ.
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3. Compute option price
C = S0e

−qTP1 −Ke−rTP2.

4. Invert Black–Scholes

Solve for σimp such that:
CBS(S0, K, T, σimp) = C.

5. Repeat on a grid

σimp(K,T ) ∀(K,T ) −→ Heston volatility surface.

The following volatility surface is generated from S&P 500 index options observed on 12 June 2023, using
the calibrated parameters and plotted as a function of maturity and log-moneyness.

Figure 1: Heston implied volatility surface generated from S&P 500 index options.
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3 SVI

3.1 Introduction

In option pricing, a parametric model for implied volatility offers an efficient and flexible way to
describe how volatility behaves across different strikes and maturities.

Rather than assuming a constant volatility, as in the Black–Scholes framework, parametric models express
the implied volatility as an analytical function of strike and time to maturity. If this function is smooth,
its derivatives can also be computed analytically, which greatly reduces computational cost and simplifies
calibration. Such models allow traders and quants to interpolate and extrapolate implied volatilities,
enabling the pricing of options that are not directly quoted on the market.

We focus on SVI parameterization, as it provides a simple yet powerful representation of the implied
volatility surface. Developed by Jim Gatheral at Merrill Lynch (1999), SVI captures the key empirical
features of market smiles while allowing analytical control over arbitrage conditions. To continue the
explanation of the model, three equivalent versions of the SVI parameterization will be introduced: the
raw, the natural and the jump–wing.

3.2 Theory behind

3.2.1 The Raw SVI Parametrization

The Stochastic Volatility Inspired (SVI) model provides a simple analytical way to describe the implied
volatility smile for a fixed maturity.

Instead of modeling volatility directly, SVI defines the total implied variancewSVI
imp(x) as a function of

log-moneyness x = ln(K/F ):

wSVI
imp(x) = a+ b

[
ρ(x−m) +

√
(x−m)2 + σ2

]
,

where the parameter set is {a, b, ρ,m, σ}.

Parameter Description
a Overall vertical shift — determines the minimum variance level
b Slope factor — controls the overall steepness of the smile
ρ Skewness parameter — defines the asymmetry between call and put wings
m Horizontal shift — moves the smile center left or right
σ Curvature — controls the width and smoothness of the smile

Note: The parameter σ in SVI does not represent the volatility of the underlying asset, it is purely a shape
parameter for the implied variance curve.

3.2.2 The Natural SVI Parametrization

wSVI
imp(x) = ∆ +

ω

2

[
1 + ηρ(x− µ) +

√
(η(x− µ) + ρ)2 + (1− ρ2)

]
.
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This is the functional form derived as the limit of the Heston model for long maturities.

Parameters have the following interpretations:

Parameter Description
∆ Vertical shift of the curve
µ Horizontal shift
ρ Correlation between the underlying price and variance process
ω, η Shape and scaling parameters linked to Heston dynamics

Although theoretically elegant, this form is less practical for calibration, and thus less used in
implementation.

3.2.3 Parameter Bounds and Practical Constraints

When calibrating the SVI model, it is important to restrict the parameters to realistic and computationally
stable ranges.

These bounds ensure that the optimization process converges to meaningful and arbitrage-free solutions.

Empirical and Numerical Constraints To maintain a positive curvature of the volatility smile (which
is observed in real markets):

σ > 0.

To ensure the slope of the smile remains reasonable:

b ≥ 0.

To avoid unrealistically high levels of implied variance:

a ≤ max
i

{wi},

wherewi are the observed total implied variances from market data.

The center of the smile should remain within the range of observed moneyness values:

2min
i
{xi} ≤ m ≤ 2max

i
{xi}.

Finally, since ρ represents the correlation between the Brownian motions driving the asset and its variance
process, it must stay within:

ρ ∈ [−1, 1].

These conditions help maintain both numerical stability and economic interpretability of the fitted
parameters.
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3.2.4 Connection to the Natural Parametrization

The Raw and Natural forms of the SVI are mathematically equivalent and can be converted through the
following relations:

(a, b, ρ,m, σ) =

(
∆+

ω

2
(1− ρ2),

ωη

2
, ρ, µ− ρ

η
,

√
1− ρ2

η

)
,

(∆, µ, ρ, ω, η) =

(
a− ω

2
(1− ρ2), m+

ρσ√
1− ρ2

, ρ,
2bσ√
1− ρ2

,

√
1− ρ2

σ

)
.

These transformations allow the Raw parameters to be interpreted in terms of the Heston model’s
stochastic volatility parameters, linking the practical implementation of SVI to its theoretical foundation.

3.2.5 Jump–Wing (JW) Parametrization

The Jump–Wing (JW) parametrization rewrites the SVI model in terms of quantities that are more
intuitive for traders and directly linked to observable features of the volatility smile.

It is defined in terms of the Raw parameters (a, b, ρ,m, σ) as follows:

vτ =
a+ b(−ρm+

√
m2 + σ2)

τ
,

ψτ =
b

2
√
wτ

(
ρ− m√

m2 + σ2

)
,

pτ =
b(1− ρ)
√
wτ

,

cτ =
b(1 + ρ)
√
wτ

,

v̂τ =
1

τ

(
a+ bσ

√
1− ρ2

)
,

wherewτ = vττ is the total at-the-money implied variance.

Parameter Description
vτ At-the-money implied variance — the variance level of the smile at (x = 0)

ψτ At-the-money implied volatility skew — measures the slope of the smile at the money
pτ Put wing slope — controls the steepness of the left side of the smile (out-of-the-money puts)
cτ Call wing slope — controls the steepness of the right side of the smile (out-of-the-money calls)
v̂τ Minimum variance level — the lowest point of the total variance curve

3.3 Practical application
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3.3.1 SVI Parameter Calibration

The calibration of the SVI model aims to find the set of parameters (a, b, ρ,m, σ) that best fit market-
observed implied volatilities. It will be described a systematic method for estimating these parameters from
data.

The approach presented follows the ideas of Gatheral and Zeliade Systems (2009) and builds upon the
parameter constraints discussed earlier.

Calibration Procedure Overview The calibration process involves three main steps:

1. Define parameter bounds — ensure realistic and numerically stable parameter ranges.

2. Introduce an efficient reparametrization — the Quasi-Explicit (QE) form, which simplifies
optimization.

3. Optimize the parameters — using a numerical method such as the Nelder–Mead algorithm.

The objective is to minimize the error between the model’s total implied variancewSVI
imp(x) and the market-

observed total implied varianceswmarket
i :

min
a,b,ρ,m,σ

∑
i

[
wSVI

imp(xi)− wmarket
i

]2
.

3.3.2 Important Observations

From the raw SVI formula:

wSVI
imp(x) = a+ b

[
ρ(x−m) +

√
(x−m)2 + σ2

]
,

we note that:

• When ρ2 ̸= 1, the function has a unique minimum at

wmin = a+ bσ
√
1− ρ2.

• When σ → 0, the function becomes piecewise linear, making calibration unstable.

• To avoid such ill-posed cases, additional parameter bounds are imposed (e.g., ensuring σ > 0,
b > 0).

These precautions ensure the optimization algorithm converges to a meaningful and unique solution.
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3.3.3 Lower Bounds

1. The parameter amust be non-negative: a ≥ 0.

2. The curvature parameter σ must be strictly positive: σ ≥ σmin > 0.

Here, σmin is a small positive constant (user-defined, typically very small).

3.3.4 Upper Bounds

There is no theoretical upper limit for σ, but in practice it is limited to keep the smile within realistic
variance levels:

σ ≤ 10.

(This value can be adjusted depending on computational limits.)

3.3.5 Bound on b (Smile Steepness)

From the no-dynamic-arbitrage condition∣∣∂xwimp(x)
∣∣ ≤ 4, ∀x, ∀τ,

we obtain the practical upper bound:

b ≤ 4

τ(1 + |ρ|)
.

Summary of All Bounds

0 ≤ a ≤ max
i

{wi},

0 ≤ b ≤ 4

τ(1 + |ρ|)
,

−1 ≤ ρ ≤ 1,

2min
i
{xi} ≤ m ≤ 2max

i
{xi},

σmin ≤ σ ≤ 10.

These constraints ensure that:

• the volatility smile has a realistic shape,

• the optimization algorithm converges efficiently,

• and the fitted SVI parameters remain within economically meaningful ranges.
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3.3.6 A New Parameterization — The Quasi-Explicit (QE) Form

The SVI model has five parameters, which makes calibration computationally expensive.

If we can reduce the dimensionality of the problem, the calibration process becomes faster and more
efficient.

A convenient reparameterization, called the Quasi-Explicit (QE) parameterization, achieves exactly that.

Step 1: Change of Variable We define a new variable:

y(x) =
x−m

σ
.

This substitution simplifies the expression of the total implied variance in the raw SVI form.

Step 2: Rewriting the Variance Equation Starting from the raw parameterization:

wSVI
imp(x) = a+ b

[
ρ(x−m) +

√
(x−m)2 + σ2

]
,

and substituting y(x), we can rewrite it as:

wSVI
imp(x) = a+ bσ

[
ρy(x) +

√
y(x)2 + 1

]
.

This can be expressed more compactly as a linear combination:

wSVI
imp(x) = â+ d y(x) + c z(x),

where
â = a, d = bρσ, c = bσ, z(x) =

√
y(x)2 + 1.

Step 3: Inner and Outer Parameters This reparameterization divides the parameters into two groups:

• Inner parameters→ â, d, c— enter linearly in the equation.

• Outer parameters→ σ,m— enter nonlinearly.

This “split” greatly simplifies the optimization.

Why It Matters

• Reduces a 5-dimensional nonlinear optimization to a 2-dimensional one.

• Makes calibration quicker and less prone to local minima.

• The method is directly inspired by Zeliade Systems (2009), where this QE form was first proposed.
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3.3.7 Optimization

After defining the parameter bounds, the next step is to calibrate the SVI model by minimizing the difference
between the model-generated and market-observed total implied variances.

In the Quasi-Explicit (QE) parameterization, the inner parameters (â, d, c) are optimized within a
compact and convex domain defined by the following bounds:

D =
{
(â, d, c) : 0 ≤ c ≤ 4σ, |d| ≤ c, |d| ≤ 4σ − c, 0 ≤ â ≤ max

i
{wi}

}
.

Here,wi are the market-observed total implied variances.

For any fixed pair of outer parameters (σ,m), the optimization problem becomes:

min
(â,d,c)∈D

fxi,wi
(â, d, c),

where the quadratic cost function is defined as:

fxi,wi
(â, d, c) =

n∑
i=1

[â+ d y(xi) + c z(xi)− wi]
2 .

Key Properties

• The function fxi,wi
is smooth and convex, which guarantees a unique minimum for every fixed

(σ,m) within the convex set D.

• The gradient of f is linear in (â, d, c), so the solution can be found analytically by inverting a
simple 3× 3 linear system. This makes the inner optimization extremely fast.

Two-Level Optimization Structure The calibration process is divided into two nested loops:

1. Inner optimization→ solves for the best (â, d, c) for fixed (σ,m).

2. Outer optimization→ adjusts (σ,m) to minimize the total fitting error.

At each iteration of the outer loop, the inner loop computes the analytical minimum of fxi,wi
, returning

the corresponding raw SVI parameters (a∗, b∗, ρ∗).

Result: This structure allows the algorithm to drastically reduce computation time while maintaining
accuracy in fitting the SVI surface to real market data.

22

https://bsic.it


Find our latest analyses and trade ideas on bsic.it

As a final illustration of the SVI framework, we report a practical calibration to S&P 500 index option
data with time to maturity T ≈ 0.51 years. In Figure 2, the black dots represent the market implied
volatilities, while the solid line shows the corresponding SVI fit, both plotted as a function of log–moneyness
m = log(K/S0).

Figure 2: SVI volatility smile generated from S&P 500 index options.
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4 Local Volatility

4.1 Introduction: Local Volatility

The local volatility model advances option pricing by replacing the Black–Scholes model’s constant, global
volatility assumption with a deterministic function of spot and time, σloc(S, t). This refinement allows
the instantaneous volatility to depend on where the underlying actually is and when, addressing persistent
features in real markets such as skews and smiles, which a constant-volatility model cannot capture.

What is “local” about local volatility?

Whereas Black–Scholes implied volatility, σIV (K,T ), is obtained for each individual option (characterized
by strikeK and expiry T ), it does not reflect a true instantaneous or path-specific market view. Instead, it
acts as a weighted average, condensing all the possible, potentially time- and state-dependent volatilities
encountered by the underlying as it evolves along every path that would lead to the option being in or out of
the money at expiry. Implied volatility reflects the market’s consensus for “the average total risk” embedded
in the value of an option given its payoff structure, not the actual risk at any particular spot or time.

Local volatility, by contrast, answers the question:

If the underlying is precisely at level S at time t, what is the market’s consensus about its
instantaneous volatility at that exact point?

The local volatility function, σloc(S, t), thus provides a map of pointwise, time-conditional volatility, in
effect, the “velocity” the market expects if and when the underlying finds itself at a given state and time,
regardless of how it got there.

How is local volatility constructed?

The key to recovering local volatility is the entire set of market vanilla option prices, typically quoted as
implied volatilities σIV (K,T ) across a grid of strikes and maturities. Provided these prices are sufficiently
smooth and arbitrage-free, results by Dupire and subsequent researchers show that you can reconstruct a
unique local volatility surface via the so-called Dupire formula, translating the averaged market information
into a deterministic and non-parametric model mechanism. Mathematically, this involves differentiating
prices (or implied vols) with respect to strikeK and maturity T , then evaluating the resulting local volatility
at the point (S = K, t = T ).

Why does local volatility matter?

• It provides the flexibility to fit all observed vanilla option prices at once, achieving full static
consistency with the market.

• It enables coherent pricing and hedging of exotic or path-dependent options, since every state and
time has a prescribed volatility.

• It offers a practical, Markovian (memoryless) model suitable for simulation and risk analysis, directly
linking observed smiles and skews in the market to model dynamics.
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4.2 Theory behind

4.2.1 The Local Volatility Model Framework

We model the underlying asset price St under the risk-neutral measure with dynamics

dSt = (r − q)St dt+ σloc(St, t)St dWt

where:

• r is the risk-free rate.

• q the dividend or foreign yield.

• σloc(S, t) is a deterministic, time- and state-dependent local volatility function.

• Wt is a standard Brownian motion.

The goal is to find σloc such that the model exactly reproduces the observed vanilla option prices for all
strikesK and expiries T .

4.2.2 Theoretical Foundations

The option price V (t, S) satisfies the backward partial differential equation (PDE):

∂V

∂t
+

1

2
σ2

loc(S, t)S
2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0

with terminal condition V (T, S) = Φ(S) given by the payoff.

Considering the market call price surfaceC(0;K,T ) as a function of strike and maturity, Dupire’s forward
PDE reads:

∂C

∂T
=

1

2
σ2

loc(K,T )K
2 ∂

2C

∂K2
− (r − q)K

∂C

∂K
− qC

Rearranged, this gives the Dupire local volatility formula

σ2
loc(K,T ) =

2 (∂TC + (r − q)K∂KC + qC)

K2∂KKC

This expresses local volatility entirely in terms of observable vanilla option prices and their derivatives with
respect to strike and maturity.

4.2.3 Practical Considerations

For numerical stability, it is convenient to work in normalized variables: the moneyness x = K
F (0,T )

and
discounted call prices:

Ĉ(T, x) =
C(0;K,T )

P (0, T )F (0, T )
.
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Here F (0, T ) = S0e
(r−q)T is the forward price, and P (0, T ) is the discount factor. Dupire’s equation

then simplifies to:

∂T Ĉ =
1

2
σ̂2
loc(T, x) x

2∂xxĈ, with σ̂2
loc(T, x) =

2 ∂T Ĉ

x2∂xxĈ
.

This normalization eliminates explicit dependence on r and q and aligns the numerical grid with market
forwards.

4.2.4 From Implied Volatility to Local Volatility

Market quotes imply Black–Scholes volatilities σIV (K,T ) for each strike and maturity. Using chain rule
and Black–Scholes sensitivities, we obtain

σ2
loc(K,T ) =

σ2
IV + 2T σIV

∂σIV

∂T
+ 2(r − q)KT σIV

∂σIV

∂K

1 + 2d1K
√
T ∂σIV

∂K
+K2T

[
d1d2

(
∂σIV

∂K

)2
+ σIV

∂2σIV

∂K2

]
where d1, d2 are computed with σIV . This formula links the implied volatility surface to the local volatility
function.

4.2.5 Interpretation and Smile Dynamics

• The local volatility σloc(S, t) represents the market-implied instantaneous volatility at price S and
time t.

• Because σloc is deterministic, the model predicts “sticky-strike” dynamics: the implied volatility smile
remains fixed relative to strikes when spot moves.

• This contrasts with empirical market behavior, which often follows “sticky-delta” dynamics,
indicating that local volatility is a baseline static model rather than a full stochastic volatility solution.

• Local volatility surfaces can be sensitive to data quality and interpolation methods, especially at
extreme strikes (wings). Ensuring smoothness and arbitrage-freeness remains critical.
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4.3 Practical application

To conclude, we show an example of the local volatility surface implied by the calibrated option data.
Starting from a smooth implied–volatility surface for S&P 500 index options observed on 12 June 2023, the
local volatility σloc(K,T ) is obtained via the Dupire formula and plotted as a function of maturity and
log–moneyness.

Figure 3: Local volatility surface generated from S&P 500 index options.
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5 Vanna–Volga

5.1 Introduction: Vanna–Volga

The Vanna–Volga (VV) method is a widely adopted, non-parametric approach in foreign exchange (FX)
markets for constructing smile-consistent implied volatility surfaces and pricing “first-generation” exotic
options. Instead of calibrating complex stochastic models, VV starts directly from a handful of liquid
market-implied volatilities for each expiry, specifically, the at-the-money (ATM) volatilityσATM , the 25-delta
risk reversal (RR), and the 25-delta butterfly (BF). These three instruments summarize the overall level,
skew (asymmetry), and smile (curvature) of the market surface.

The method’s underlying principle is to replicate any arbitrary-strike option by combining three benchmark
options (typically ATM, 25-delta call, and 25-delta put), whose volatilities are directly observed in the market.
This portfolio is locally vega-neutral and designed so that its price sensitivity matches the market’s volatility
smile through “vanna” (sensitivity to spot and vol) and “volga” (sensitivity to vol squared). The cost of
constructing and hedging this portfolio under market and Black–Scholes volatilities is compared, and the
resultant adjustment is added to the vanilla Black–Scholes price to yield a more market-consistent value.

Specifically, the VV method does not require a global volatility parameter, nor does it perform costly
multi-dimensional calibrations. Instead, it interpolates the smile using these three points and adjusts the
Black–Scholes model accordingly. This means that for any given strikeK and expiry T , the final implied
volatility σV V (K,T ) will exactly match the market’s ATM, RR, and BF inputs at their respective strikes
and interpolate smoothly across other strikes.

While the method is intuitive and computationally light (making it ideal for booking and risk-managing
exotics in live trading environments), it is not without limitations. The standard VV approach may not
extrapolate well in the extreme wings of the smile or under unusually strong skew conditions, sometimes
requiring theoretical corrections or smoothing.

Originating in FX, the VV framework has seen refinements by practitioners such as Lipton, McGhee,
Wystup, and Castagna–Mercurio, but it remains relatively rare in equity/commodity markets.

5.2 Theory behind

The VV method is essentially a way to adjust the Black–Scholes option price so that it reflects the market’s
volatility smile. It uses three liquid market quotes: the ATM volatility, the 25-delta risk reversal, and the
25-delta butterfly as the foundation. These three points capture the level, skewness and curvature of the
implied volatility smile.

In particular, it aligns exposures to volatility (vega), the change of vega with spot (vanna), and the change of
vega with volatility (volga). Once this portfolio is set up, the cost of hedging with market quotes is compared
to the theoretical Black–Scholes cost. The difference becomes the adjustment added to the Black–Scholes
price, yielding a smile-consistent option value.

In practice, this means the VV method takes the easy-to-compute Black–Scholes price and “corrects” it
using real market information. By VV we obtain a set of option prices and implied volatilities that match
the three input quotes exactly and interpolate smoothly across strikes. This approach is simple, intuitive
and model-free.
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Because of its simplicity, VV is not perfect: it can behave poorly in the extreme wings of the smile (very
deep ITM or OTM strikes) or under extreme skew.

5.2.1 Vega, Vanna and Volga

Before diving into the method, we introduce Vega, Vanna and Volga.

Vega. Vega (V) quantifies the sensitivity of an option’s price to changes in implied volatility. For a
European option with current spotS0, volatility σ, time to maturity T − t, and continuously compounded
yield q:

Vega = S0

√
T − tN ′(d1)e

−q(T−t)

where
N ′(d1) =

1√
2π
e−d21/2

and

d1 =
ln(S0/K) + (r − q + 1

2
σ2)(T − t)

σ
√
T − t

.

Vanna. Vanna represents the risk to the skew increasing. It is used to monitor the Vega exposure. It can
be defined in three different ways:

∂V

∂σ
,

∂2P

∂σ2
.

Vanna is derived by

Vanna = e−q(T−t)
√
T − tN ′(d1)

(
d2
σ

)
In terms of Vega, it can be written as

Vanna = Vega · d2
Sσ

where d2 = d1 − σ
√
T − t.

Volga. Volga represents the sensitivity of Vega with respect to the change in volatility and shows the risk
to the smile becoming more pronounced. It measures the convexity of option price with respect to volatility.
Vega–Volga is the same relationship we have with Gamma–Delta. It can be defined in two different ways:

∂V

∂σ
,

∂2P

∂σ2
.

Volga is derived as

Volga = e−q(T−t)
√
T − tN ′(d1)

(
d1d2
σ

)
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In terms of Vega, it can be written as

Volga = Vega · d1d2
Sσ

.

5.2.2 The Vanna–Volga Option Pricing Formula

The Vanna–Volga option price CV V (K) is obtained by adding to the Black–Scholes theoretical price
CBS(K) the cost difference of the hedging portfolio induced by the market implied volatilities with respect
to the constant volatility σ:

CV V (K) = CBS(K) +
3∑

i=1

xi(K)
(
CM(Ki)− CBS(Ki)

)
whereCM(K) denotes the observed market call option price for strikeK .

The first step in VV is to build a portfolio of three options with same maturity but different strikes, so that
the portfolio can hedge the price variation of the callC(K) up to the second order in the underlying and
the volatility. Under diffusion dynamics both St and σt, by Itô’s lemma we have

dCBS(K)−∆ dSt −∆ δSt dt−
3∑

i=1

xi dC
BS(Ki)

=

[
∂CBS(K)

∂t
−∆ δSt −

3∑
i=1

xi
∂CBS(Ki)

∂t

]
dt

+

[
∂CBS(K)

∂S
−∆−

3∑
i=1

xi
∂CBS(Ki)

∂S

]
dSt

+

[
∂CBS(K)

∂σ
−

3∑
i=1

xi
∂CBS(Ki)

∂σ

]
dσt

+
1

2

[
∂2CBS(K)

∂S2
−

3∑
i=1

xi
∂2CBS(Ki)

∂S2

]
(dSt)

2

+
1

2

[
∂2CBS(K)

∂σ2
−

3∑
i=1

xi
∂2CBS(Ki)

∂σ2

]
(dσt)

2

+

[
∂2CBS(K)

∂S∂σ
−

3∑
i=1

xi
∂2CBS(Ki)

∂S∂σ

]
dSt dσt.

We zero out coefficients dSt, dσt, (dσt)2 and dStdσt so that no stochastic terms are involved in its
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differential. Applying the Black–Scholes PDE, we get

dCBS(K)−∆tdSt −∆tδStdt−
3∑

i=1

xidC
BS
i (Ki) = r

(
CBS(K)−∆tSt −

3∑
i=1

xiC
BS
i (Ki)

)
dt.

Although volatility is stochastic and options are priced by the Black–Scholes formula, we can still have a
perfect hedge.

Assuming Delta-hedging and that the replicating portfolio is Vega-neutral and Gamma-neutral, we can
find the weights by imposing same Vega, Vanna and Volga:

∂CBS

∂σ
(K) =

3∑
i=1

xi(K)
∂CBS

∂σ
(Ki),

∂2CBS

∂σ2
(K) =

3∑
i=1

xi(K)
∂2CBS

∂σ2
(Ki),

∂2CBS

∂σ ∂S0

(K) =
3∑

i=1

xi(K)
∂2CBS

∂σ ∂S0

(Ki).

By solving equations we derive the unique solution of the weights

x1(K) =
V(K)

V(K1)

ln K2

K
ln K3

K

ln K2

K1
ln K3

K1

,

x2(K) =
V(K)

V(K2)

ln K
K1

ln K3

K

ln K2

K1
ln K3

K2

,

x3(K) =
V(K)

V(K3)

ln K
K1

ln K
K2

ln K3

K1
ln K3

K2

.

IfK = Kj , then xi(K) = 1 for i = j and zero otherwise.

The Vanna–Volga price preserves convexity and matches probability mass by construction. The second
derivative with respect to strike, ∂2C

∂K2 , remains non-negative, reflecting positive risk-neutral density.

5.2.3 The 1st and the 2nd Approximation of Vanna–Volga Implied Volatility

We want an implied volatility ϱ(K) for any strikeK that is consistent with the VV price. Instead of solving
for ϱ(K) by numerically inverting Black–Scholes each time, we can find a closed-form approximation by
Taylor-expanding the VV price around a reference vol, in this case σ = σ2 which is the ATM vol.

The first-order approximation is given by:

ϱ(K) = X1(K)σ1 + X2(K)σ2 + X3(K)σ3
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Implied vol at strike K is a weighted average of the three market quotes σ1, σ2, σ3. We have that Xi(K)

depend on log-strike ratios and they sum to 1. It produces a quadratic function of log-strike. It is very
simple, fast and intuitive, but overestimates/underestimates vol at far ITM/OTM strikes.

The second-order approximation is given by

ϱ(K) = σ2 +
−σ2 +

√
σ2
2 + d1(K)d2(K) [2σ2D1(K) +D2(K)]

d1(K)d2(K)
.

where
D1(K) =

ln(K2/K) ln(K3/K)

ln(K2/K1) ln(K3/K1)
σ1 +

ln(K/K1) ln(K3/K)

ln(K2/K1) ln(K3/K2)
σ2

+
ln(K/K1) ln(K/K2)

ln(K3/K1) ln(K3/K2)
(σ3 − σ2),

D2(K) =
ln(K2/K) ln(K3/K)

ln(K2/K1) ln(K3/K1)
d1(K1)d2(K1)(σ1 − σ2)

2

+
ln(K/K1) ln(K/K2)

ln(K3/K1) ln(K3/K2)
d1(K3)d2(K3)(σ3 − σ2)

2.

The second approximation is not only accurate within the interval [K1, K3] but also in the wings, even for
extreme values of put Deltas.
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6 SABR

6.1 Introduction

The SABR model is a parsimonious stochastic-volatility framework used pervasively in rates for
caplets/floorlets and swaptions. It provides a compact, trader-friendly parameterization of the smile
across strikes and tenors while retaining closed-form (asymptotic) implied-vol formulas for fast calibration
and risk.

It is used in cap/floor markets, where smiles are mainly quoted in normal (Bachelier) or lognormal (Black)
vols depending on regime, and in swaption markets, where smiles are quoted per expiry × underlying swap
tenor, forming the vol cube.

SABR is used in rates since it captures level dependence of ATM vol (via β) and controls skew and curvature
(via ρ, α).

6.2 Theory behind

6.2.1 Model definition

The SABR model is a two-factor model for the forward prices of the underlying, whose second factor (the
spot volatility σt) is a stochastic process. Mathematically it can be defined as follows:{

dFt = σtF
β
t dWt

dσt = ασt dBt

and ρ =
d⟨W,B⟩t

dt
for t ∈ [0, T ]

where Ft is the forward price of the underlying,Wt andBt are Brownian motions and ρ is the correlation
between them. α is a parameter which can be understood as the volatility of volatility (α > 0), while β is a
parameter β ∈ [0, 1] that determines how at-the-money volatility changes when forward price changes.

β controls the relationship between volatility and price level, how “elastic” volatility is relative to the forward:

• If β = 1 then dFt = σtFtdWt. This is the lognormal model (similar to Black–Scholes), where
volatility is proportional to price level.

• If β = 0 then dFt = σtdWt. This is the normal model (Bachelier model), where volatility is
independent of price level. Forward price can become negative (relevant for low or near-zero rate
markets).

• If β = 1
2

then we get a Cox–Ingersoll–Ross (CIR) like process, where volatility grows sublinearly
with price level.
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6.2.2 Hagan’s Formula

Hagan’s formula allows us to express the implied volatility σB of an option in terms of its strike price, time
to maturity and the parameters previously mentioned from the SABR model:

σB(F0, K) =
σ0

(F0K)
1−β
2

[
1 + (1−β)2

24
log2

(
F0

K

)
+ (1−β)4

1920
log4

(
F0

K

)
+ · · ·

] · ( z

x(z)

)

·

[
1 +

(
(1− β)2

24

σ2
0

F
2(1−β)
0

+
1

4

ρβασ0

F 1−β
0

+
2− 3ρ2

24
α2

)
T

]
+ · · ·

where σ0 is the initial volatility and the z and x(z) terms are given by the following expressions

z =
α

σ0

(
F0

K

) 1−β
2

log

(
F0

K

)
, x(z) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

Moreover, the formula can be further simplified in the case of at-the-money options (where K = F0)
because of some logarithms vanishing:

σB(F0, K) =
σ0

F 1−β
0

(
z

x(z)

)[
1 +

(
(1− β)2

24

σ2
0

F
2(1−β)
0

+
1

4

ρβασ0

F 1−β
0

+
2− 3ρ2

24
α2

)
T

]
+ · · ·

As Hagan et al. indicate, the terms that account for “. . .” can be omitted because of their small size,
even though this omission can lead to relative errors when pricing options. Alòs and Garcı̀a provide an
approximation for both formulae when ignoring the small-sized terms and when β = 1:

σB(F0, K) ≈ σ0

[
1 +

(
ρασ0
4

+
2− 3ρ2

24
α2

)
T

](
z

x(z)

)
,

σB(F0, K) ≈ σ0

[
1 +

(
ρασ0
4

+
2− 3ρ2

24
α2

)
T

]
.

The complete formulae and the approximations can show how the implied volatility depends on the main
parameters of the model. Both α and ρ affect the implied volatility skew, as high values of α make the
curvature increase, while high values of |ρ| make the skew more pronounced.

One important result is that the short-term skew converges to a finite limit that depends on the product
αρ. However, empirical market data often exhibits a blow-up in the short-end of the implied volatility
surface, meaning that the skew tends to infinity as maturity approaches zero. Consequently, the SABR
model cannot capture this short-end blow up.

Another notable issue with the SABR model is that Hagan’s closed-form approximation is not arbitrage-free.
The approximate density function implied by the model can take negative values for low strike prices (Alòs
and Garcı̀a, 2021), potentially leading to arbitrage opportunities and inaccurate pricing results.
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6.2.3 SABR Model Calibration

The goal of calibrating a model is to obtain parameters that allow reproducing market volatility surface for
all strike prices and maturities.

However, as mentioned before, stochastic volatility models such as the SABR are not able to reproduce the
dependence of the implied volatility with respect to time to maturity, so trying to obtain a set of parameters
for all maturities would not be effective. A common practice in the financial industry is to calibrate the
model obtaining a set of parameters for each fixed maturity, so we will use this approach for calibrating.
Hence, we need to minimize the sum of squared errors to obtain a triple of (α, ρ, σ0) for each time to
maturity:

(α̂, ρ̂, σ̂0)T = arg min
α,ρ,σ0

∑
KT

(
σmkt
K,T − σSABR(F0, T,K, α, ρ, σ0)

)2
where σmkt

K,T is the market implied volatility and σSABR is the SABR implied volatility for a given strikeK
and maturity T . In this context, the implied volatility of the SABR model is the implied volatility obtained
through Hagan’s formula, and we use Alòs and Garcı̀a approximation in the minimization problem as the
gains of precision for including other terms are not significant.
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7 Conclusions

This project has compared four complementary approaches to volatility surface modelling, Heston, SVI,
local volatility, and Vanna–Volga, highlighting their structural differences, asset-class focus, and practical
purposes. Heston (together with SABR in the rates space) belongs to the family of stochastic-volatility
models for the underlying dynamics, defined via stochastic differential equations with a small number of
parameters. These models are particularly suited to equity, FX, and interest-rate markets where one requires
a dynamic description of paths and risk factors that is broadly consistent with observed smiles. In contrast,
SVI, local volatility, and Vanna–Volga are primarily surface- or price-level constructions: SVI provides a
parametric total-variance fit per expiry, local volatility recovers a deterministic σloc(S, t) from the full grid
of vanilla prices, and Vanna–Volga directly adjusts Black–Scholes prices from a handful of benchmark
quotes.

From an asset-class perspective, Heston is widely used in equity and FX to generate stochastic-volatility
surfaces and to interpret skew and smile in terms of mean reversion, volatility of volatility, and spot/vol
correlation, while SABR plays an analogous role in interest-rate markets for cap/floor and swaption smiles.
SVI has become a market standard for equity index and single-name volatility surfaces because it combines
parsimony with explicit no-arbitrage constraints across log-moneyness and maturities, and its “natural” and
“jump-wing” forms link directly to the long-maturity limit of Heston. Local volatility is most natural for
equity and FX index books where static replication of exotics is important: by construction it fits the entire
vanilla grid exactly, but its deterministic, sticky-strike dynamics make it a baseline rather than a fully realistic
stochastic description. Finally, Vanna-Volga is predominantly an FX tool for first-generation exotics, where
the market quotes smiles in terms of ATM, risk reversals, and butterflies, and desks need a fast, model-free
way to embed this information into prices.

In terms of purpose, Heston and SABR are primarily used for dynamic hedging, risk-factor simulation,
and consistent pricing of both vanillas and path-dependent exotics, accepting a coarser fit to the raw surface
in exchange for a coherent stochastic structure. SVI’s role is to provide a front-office quality, arbitrage-free
implied-volatility surface that interpolates and extrapolates market quotes smoothly and robustly, serving
as the backbone for quoting and risk systems. Local volatility is designed to achieve full static replication of
vanillas andMarkovian pricing of exotics, trading off realistic dynamics (sticky-delta behaviour, volatility
clustering) for exact consistency with today’s surface. Vanna–Volga is explicitly desk-oriented: it offers a
quick, smile-consistent correction to Black–Scholes prices that matches a small set of liquid FX quotes
exactly and preserves convexity, making it attractive for daily marking and risk of barrier, digital, and other
simple exotics despite known limitations in the wings.

Overall, the analysis confirms that no single framework dominates across all use cases. Instead, the
appropriate choice depends on the asset class, the required balance between fit and dynamics, and whether
the desk prioritises theoretical consistency, calibration stability, or speed and interpretability in a live trading
environment. Within this landscape, SVI and local volatility provide powerful tools for constructing and
interrogating the volatility surface itself, while Heston and related stochastic-volatility models serve as
workhorses for scenario generation, risk analysis, and pricing of more complex derivatives.
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Model Type Typical asset class Main purpose Key limitations
Heston Stochastic vol (SDE) Equity, FX Dynamic

pricing/hedging;
generating stochastic
vol paths consistent
with smiles.

Limited flexibility to
fit full surface; cali-
bration can be deli-
cate.

SABR Stochastic vol (SDE) Rates Modelling swaption
and cap/floor smiles
in a term-structure
framework.

Asymptotic model;
may struggle in
extreme wings or
stressed regimes.

SVI Parametric vol surface Equity, some FX Smooth,
arbitrage-aware
fit of implied vol
surface for quoting
and risk.

Static only; no path
dynamics; quality de-
pends on calibration
choices.

Local Volatility Deterministic σloc(S, t) Equity, FX indices Exact fit of vanilla
grid; Markovian pric-
ing of exotics.

Sticky-strike dynam-
ics; very sensitive to
noise and arbitrage in
input.

Vanna–Volga Pricing adjustment FX exotics Fast smile-consistent
correction to Black–
Scholes for simple ex-
otics.

Heuristic; no
underlying dynamic
model; weaker in
wings/complex
payoffs.

Table 1: Summary of the main models, their typical use, and key limitations.
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